
www.manaraa.com

Retrospective Theses and Dissertations Iowa State University Capstones, Theses and
Dissertations

2004

Nutritional and hormonal modulation of glycine
N-methyltransferase: implications for aberrant
methyl group metabolism
Matthew James Rowling
Iowa State University

Follow this and additional works at: https://lib.dr.iastate.edu/rtd

Part of the Dietetics and Clinical Nutrition Commons, Human and Clinical Nutrition
Commons, and the Medical Nutrition Commons

This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University
Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University
Digital Repository. For more information, please contact digirep@iastate.edu.

Recommended Citation
Rowling, Matthew James, "Nutritional and hormonal modulation of glycine N-methyltransferase: implications for aberrant methyl
group metabolism " (2004). Retrospective Theses and Dissertations. 814.
https://lib.dr.iastate.edu/rtd/814

http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Frtd%2F814&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Frtd%2F814&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/rtd?utm_source=lib.dr.iastate.edu%2Frtd%2F814&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Frtd%2F814&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Frtd%2F814&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/rtd?utm_source=lib.dr.iastate.edu%2Frtd%2F814&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/662?utm_source=lib.dr.iastate.edu%2Frtd%2F814&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/97?utm_source=lib.dr.iastate.edu%2Frtd%2F814&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/97?utm_source=lib.dr.iastate.edu%2Frtd%2F814&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/675?utm_source=lib.dr.iastate.edu%2Frtd%2F814&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/rtd/814?utm_source=lib.dr.iastate.edu%2Frtd%2F814&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digirep@iastate.edu


www.manaraa.com

Nutritional and hormonal modulation of glycine jV-methyltransferase: Implications for 
aberrant methyl group metabolism 

by 

Matthew James Rowling 

A dissertation submitted to the graduate faculty 

in partial fulfillment of the requirements for the degree of 

DOCTOR OF PHILOSOPHY 

Major: Nutrition 

Program of Study Committee: 
Kevin Schalinske, Major Professor 

Manju Reddy 
Diane Birt 

Patricia Murphy 
Donald Beitz 

Iowa State University 

Ames, Iowa 

2004 



www.manaraa.com

UMI Number: 3136347 

INFORMATION TO USERS 

The quality of this reproduction is dependent upon the quality of the copy 

submitted. Broken or indistinct print, colored or poor quality illustrations and 

photographs, print bleed-through, substandard margins, and improper 

alignment can adversely affect reproduction. 

In the unlikely event that the author did not send a complete manuscript 

and there are missing pages, these will be noted. Also, if unauthorized 

copyright material had to be removed, a note will indicate the deletion. 

UMI 
UMI Microform 3136347 

Copyright 2004 by ProQuest Information and Learning Company. 

All rights reserved. This microform edition is protected against 

unauthorized copying under Title 17, United States Code. 

ProQuest Information and Learning Company 
300 North Zeeb Road 

P.O. Box 1346 
Ann Arbor, Ml 48106-1346 



www.manaraa.com

ii 

Graduate College 
Iowa State University 

This is to certify that the doctoral dissertation of 

Matthew James Rowling 

has met the dissertation requirements of Iowa State University 

Committee Member 

Committee Member 

C itt e Member 

Committee Member

Major Professor 

For the Major Program 

Signature was redacted for privacy.

Signature was redacted for privacy.

Signature was redacted for privacy.

Signature was redacted for privacy.

Signature was redacted for privacy.

Signature was redacted for privacy.



www.manaraa.com

iii 

TABLE OF CONTENTS 

LIST OF FIGURES vi 

LIST OF ABBREVIATIONS vii 

ACKNOWLEDGEMENTS viii 

GENERAL INTRODUCTION 1 
Dissertation Organization 2 
Description of the Research Problem 

REVIEW OF LITERATURE 3 
Folate Metabolism 3 

Biological role of folate compounds 3 
Absorption and distribution of folate compounds 4 
The folate-dependent one-carbon pool 4 
Entrance of one-carbon units into the folate-dependent one-carbon pool 6 

Methyl Group Metabolism 7 
General overview of methyl group metabolism 7 
Regulation of methyl group metabolism 9 

Allosteric regulation 9 
Hormonal modulation of methyl group metabolism 11 

Glucagon, glucocorticoids, and insulin 11 
Growth hormone and thyroxine 12 

Dietary Requirements 13 
Folate requirements 13 
Dietary reference intakes 13 
Folate requirements during pregnancy 14 
Methyl group requirements 15 

One-Carbon Metabolism in Health and Disease 15 
General overview 15 
Neural tube defects 16 
Hyperhomocysteinemia and cardiovascular disease 18 

Homocysteinemia as a risk factor for cardiovascular disease 18 
Regulation of homocysteine metabolism 19 

Etiology of hyperhomocysteinemia 20 
Enzyme deficiencies 20 

Cystathionine ^-synthase polymorphisms 20 
Methylenetetrahydrofolate reductase polymorphisms 22 
Methionine synthase and betaine:homocysteine methyltransferase 23 
Polymorphisms 

Nutrient deficiency and environmental factors 24 



www.manaraa.com

iv 

Nutrient deficiency 24 
Pharmacological agents 25 
Diabetes mellitus 25 

Carcinogenesis 27 
Hypomethylated DNA 27 
S AH and DNA hypomethylation 27 
DNA strand breaks 28 
Hepatocarcinogenesis and methyl group deficiency 29 

Neurological disorders 30 
Megaloblastic anemia and the "methyl trap" hypothesis 30 
Impaired pancreatic function 31 
Drugs and toxins 31 

Retinoids 31 
Ethanol 33 
Anticonvulsants 34 
Oral contraceptives 35 
Fumonisins 35 

Glycine N-methyltransferase 35 

RETINOID COMPOUNDS ACTIVATE AND INDUCE HEPATIC 37 
GLYCINE vV-METHYLTRANSFERASE IN RATS 

Abstract 37 
Introduction 39 
Materials and Methods 40 

Chemicals and reagents 40 
Animals and diets 40 
Measurement of GNMT activity 41 
Measurement of GNMT protein 41 
Statistical analysis 42 

Results 42 
Retinoid treatment did not alter rat growth rates 42 
Retinoids increased the enzymatic activity of hepatic GNMT 42 
Both CRA and ATRA induce GNMT protein abundance 43 

Discussion 43 
Acknowledgements 44 
Literature Cited 44 

VITAMIN A AND ITS DERIVATIVES INDUCE HEPATIC GLYCINE 54 
JV-METHYLTRANSFERASE AND HYPOMETHYLATION OF DNA 
IN RATS 

Abstract 54 
Introduction 56 
Materials and Methods 57 

Chemicals and reagents 57 



www.manaraa.com

V 

Animals and diets 58 
Measurement of GNMT activity and protein abundance 58 
Chemical cross-linking of endogenous GNMT 59 
DNA methylation 59 
Total liver glutathione 60 
Statistical analysis 60 

Results 61 
Retinoids did not alter the growth rate or relative liver size of rats 61 
Retinoids activate hepatic GNMT 61 
Retinoid compounds, including vitamin A, induce GNMT abundance 61 
Retinoid treatment induced hepatic DNA hypomethylation, but failed to 62 
alter hepatic glutathione levels 

Discussion 62 
Literature Cited 65 

RETINOIC ACID AND GLUCOCORTICOID TREATMENT INDUCE 75 
HEPATIC GLYCINE iV-METHYLTRANSFERASE AND LOWER 
PLASMA HOMOCYSTEINE LEVELS IN RATS 

Abstract 75 
Introduction 77 
Materials and Methods 79 

Chemicals 79 
Animal experiments 79 
Cell culture 80 
Measurement of GNMT activity 81 
Analysis of GNMT protein abundance 81 
Determination of plasma homocysteine concentrations 82 
Statistical analysis 82 

Results 82 
Intact adrenal function was not required for the induction of hepatic GNMT 82 
by RA 
Hepatic GNMT was activated and induced by both RA and glucocorticoid 83 
treatment 
Induction of GNMT in rat hepatoma cells 84 

Discussion 85 
Literature Cited 89 

GENERAL CONCLUSIONS 104 

LITERATURE CITED 107 



www.manaraa.com

vi 

LIST OF FIGURES 

REVIEW OF LITERATURE 

Figure 1. Chemical structure of tetrahydrofolate and its various derivatives. 4 

Figure 2. Folate-dependent one-carbon metabolism. 5 

Figure 3. Methyl group metabolism. 8 

Figure 4. Regulation of methyl group metabolism. 9 

RETINOID COMPOUNDS ACTIVATE AND INDUCE HEPATIC 
GLYCINE iV-METHYLTRANSFERASE IN RATS 

Figure 1. Interrelationship between methyl group and folate metabolism. 50 

Figure 2. Administration of 13-czs-retinoic acid (CRA) and all-fnms-retinoic 51 
acid (ATRA) to rats for 7 d did not alter their growth rats. 

Figure 3. Administration of lS-cz's-retinoic acid (CRA) and all-fraws-retinoic 52 
acid (ATRA) to rats increased the hepatic activity of glycine 
iV-methyltransferase (GNMT) in both control and L-methionine-
supplemented rats. 

Figure 4. Administration of 13-cw-retinoic acid (CRA) and all-frans-retinoic 53 
acid (ATRA) to rats increased the hepatic abundance of glycine 
JV-methyltransferase (GNMT) in both control and L-methionine-
supplemented rats. 

VITAMIN A AND ITS DERIVATIVES INDUCE HEPATIC GLYCINE 
7V-METHYLTRANSFERASE AND HYPOMETHYLATION OF DNA 
IN RATS 

Figure 1. 

Figure 2. 

Figure 3. 

Methyl group metabolism. 70 

Retinoid administration activated hepatic GNMT in rats. 71 

Correlation between GNMT activity and abundance across retinoid 72 
treatment groups. 

Figure 4. The enzymatically active tetrameric form of GNMT was mediated by 73 
retinoid treatment. 



www.manaraa.com

vii 

Figure 5. Administration of ATRA to rats resulted in hepatic DNA 74 
hypomethylation. 

RETINOIC ACID AND GLUCOCORTICOID TREATMENT INDUCE 
HEPATIC GLYCINE 7V-METHYLTRANSFERASE AND LOWER 
PLASMA HOMOCYSTEINE LEVELS IN RATS 

Figure 1. Folate, methyl group, and homocysteine metabolism. 96 

Figure 2. Induction of hepatic glycine Af-methyltransferase (GNMT) by retinoic 97 
acid (RA) in sham-operated and adrenalectomized (ADX) rats. 

Figure 3. Induction of hepatic glycine TV-methyltransferase (GNMT) by retinoic 98 
acid (RA), dexamethasone (DEX) in sham-operated and 
adrenalectomized (ADX) rats. 

Figure 4. Regulation of hepatic and pancreatic glycine TV-methyltransferase 99 
(GNMT) by retinoic acid (RA) and dexamethasone (DEX) in sham-
operated and adrenalectomized (ADX) rats. 

Figure 5. Plasma homocysteine concentrations in sham-operated and 100 
adrenalectomized (ADX) rats following treatment with retinoic acid 
(RA), dexamethasone (DEX), or both. 

Figure 6. Comparison of retinoic acid (RA) regulation of glycine //-methyl- 101 
transferase (GNMT) abundance in rat hepatoma cells and rat 
liver. 

Figure 7. Regulation of glycine JV-methyltransferase (GNMT) by retinoic acid 102 
(RA) and dexamethasone (DEX) in rat hepatoma cells. 

Figure 8. Regulation of glycine iV-methyltransferase (GNMT) abundance by 103 
various combinations of retinoic acid (RA), dexamethasone (DEX), 
dibutyryl-cAMP (Bt^cAMP), and glucagon in rat hepatoma cells. 



www.manaraa.com

viii 

LIST OF ABBREVIATIONS 

AAP American Academy of Pediatrics 
AI adequate intake 
AICAR 5-amino-4-imidazole carboxamide ribonucleotide 
BHMT betaine (homocysteine methy ltransferase 
cAMP cyclic adenosinemonophosphate 
cps cystathionine ^-synthase 
CDC Centers for Disease Control and Prevention 
CRA 13-cw-retinoic acid; isotretinoin 
CVD cardiovascular disease 
DENA diethylnitrosamine 
DFE dietary folate equivalent 
DRI dietary reference intakes 
dTTP deoxythymidine triphosphate 
dUTP deoxyuridine triphosphate 
GAR glycinamide ribonucleotide 
GNMT glycine JV-methyltransferase 
IU international units 
LDL low density lipoprotein 
MAT methionine adenosyltransferase 
MS methionine synthase 
MTHFR 5,10-methylenetetrahydrofolate reductase 
NTD neural tube defect 
PEPCK phosphoenolpyruvate carboxykinase 
RDA recommended daily allowance 
SAH S-adenosyl homocysteine 
SAM S-adenosyl methionine 
SHMT serine hydroxymethyltransferase 
THF tetrahydrofolate 
UL upper limit 
USFDA United States Food and Drug Association 
USPHS United States Public Health Services 



www.manaraa.com

ix 

ACKNOWLEDGEMENTS 

I would like to thank my major professor, Dr. Kevin Schalinske, for giving me every 

opportunity to be successful as a researcher, perpetuating my love for science, and being a 

friend. He will never know how much I appreciated and marveled at the knowledge, 

patience, and work ethic he possesses. I would also like to thank my committee members, 

Drs. Manju Reddy, Diane Birt, Pat Murphy, and Don Beitz for spending their valuable time 

helping me make it through the program. 

I would like to thank all of the graduate students in my laboratory, Virginia Knoblock, 

Kristin Nieman, and Marlies Ozias as well as the undergraduate students, David Chipman, 

Stacy Schroeder, and Kelly Tanghe for their camaraderie. 

I would like to give special thanks to Jane Meyer and Jean Tilley in 220 MacKay Hall 

for all that they do. They made my life much easier, and they are such wonderful people that 

we all should be so lucky to work with them. 

Finally, I would like to thank the Department of Food Science and Human Nutrition for 

introducing me to my fiancé Laura Moeller, who is my best friend and supporter. 



www.manaraa.com

1 

GENERAL INTRODUCTION 

Dissertation Organization 

This dissertation consists of a general introductory chapter that includes a short 

description of the research problem investigated by the author. The second chapter is a 

comprehensive review of the literature relevant to the research area explored by the author. 

The third, fourth, and fifth chapters are manuscripts published in the Journal of Nutrition that 

document research completed by the author of this dissertation that investigated the role of 

retinoids and glucocorticoids in the modulation of various aspects of folate and methyl group 

metabolism. The final chapter contains general conclusions regarding the significance of the 

research findings of the author as well as future directions that should be explored. 

Following the general conclusions chapter of this dissertation, a comprehensive list of 

references for the introduction, review of literature, and general conclusions is included. 

Each manuscript has its own list of references. 

Description of the Research Problem 

Folate, homocysteine, and methyl group metabolism are interrelated pathways 

collectively referred to as one-carbon metabolism that are important in health and disease. 

Through the interaction between these pathways, methyl groups supplied from dietary 

methionine or from the folate-dependent remethylation of homocysteine are activated to S-

adenosylmethionine (SAM), which then serves as a donor of methyl groups in a number of 

transmethylation reactions. SAM-dependent reactions are required for the synthesis and 

modification of numerous molecules, including polyamines, phosphatidylcholine, and 

neurotransmitters, as well as the methylation of DNA. Therefore, down regulation of one-

carbon metabolism may result in pathological consequences. Previous work in our 

laboratory demonstrated that the administration of the vitamin A derivative, 13-cz>retinoic 

acid produced conditions indicative of elevated methyl group catabolism (Schalinske and 

Steele 1991). Based in part on these findings, I hypothesized that the loss of methyl groups 

due to retinoid treatment was mediated by the inappropriate activation of glycine N-

methyltransferase (GNMT), a key cytosolic enzyme found primarily in the liver, kidney, and 
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pancreas that regulates the supply of SAM available for transmethylation reactions by 

disposing of excess methyl groups (Ogawa et al. 1998) and regulating the supply of methyl 

groups from the one-carbon pool (Wagner 1985). Moreover, I postulated that the loss of 

methyl groups through the activation of GNMT would lead to the down regulation of other 

SAM-dependent transmethylation reactions. 

In Chapter 3 of this dissertation, I showed for the first time that retinoids can up-

regulate hepatic GNMT activity and protein abundance in rats. To determine the 

physiological significance of these findings, I then conducted a series of experiments that 

examined the impact of GNMT up-regulation on other SAM-dependent transmethylation 

reactions. In Chapter 4,1 illustrated that retinoid-mediated induction of GNMT leads to the 

down-regulation of SAM-dependent methylation of hepatic DNA, suggesting that GNMT 

up-regulation can lead to conditions consistent with methyl group deficiency. 

GNMT activity has been shown to be elevated during uncontrolled diabetes (Xue and 

Snoswell 1985; Jacobs et al. 1998), a disease state associated with abnormal circulating 

concentrations of counter-regulatory hormones (i.e., glucagon and glucocorticoids) and 

increased expression of gluconeogenic enzymes. Furthermore, GNMT is found primarily in 

gluconeogenic tissues (e.g., liver, kidney, and pancreas) (Yeo and Wagner 1994). Therefore, 

I hypothesized that gluconeogenesis plays a critical role in regulating the expression of 

GNMT. In Chapter 5,1 demonstrated that, like retinoids, glucocorticoids possess the ability 

to increase the enzymatic activity and protein abundance of GNMT. In addition, I provide 

strong evidence that an interaction exists between retinoids and gluconeogenesis in the 

increased up-regulation of GNMT. Taken together, these findings implicate increased 

GNMT expression as a potential complication of diabetes and/or use of retinoids for 

therapeutic purposes. 
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REVIEW OF LITERATURE 

Folate Metabolism 

Biological Role of Folate Compounds 

Folate, otherwise known as pteroylmonoglutamate, is a generic term for a family of 

water soluble B-vitamins that function to accept and distribute one-carbon units to where 

they can be utilized in biosynthetic reactions that are required for maintenance of normal 

health. When its pteridine moeity is in its fully reduced form, folate becomes the 

physiologically functional molecule tetrahydrofolate (THF) (Figure 1). Within the cell, THF 

derivatives coexist in metabolic equilibrium in the cytosol and mitochondria, cellular 

compartments where folate-dependent one-carbon transfer reactions, collectively referred to 

as one-carbon metabolism, readily occur. Critical biological processes that require folate 

dependent one-carbon transfer reactions include the methylation of DNA and the synthesis of 

purines, pyrimidines, neurotransmitters, phospholipids, methionine, and polyamines. 

Therefore, aberrations of folate metabolism due to conditions such as folate deficiency and 

polymorphisms of folate-dependent enzymes have the ability to produce a number of 

pathological conditions. 

Absorption and Distribution of Folate Compounds 

Natural folate compounds are acquired from the diet mainly by consuming dark 

green, leafy vegetables and citrus fruits. Folate in its natural form consists primarily of 

polyglutamated molecules, which are hydrolyzed by y-glutamylhydrolase to the 

monoglutamated form in the gut prior to absorption across the intestinal mucosa (Shane 

1995). After its intestinal absorption, the monoglutamated folate molecule is bound by 

folate-binding proteins and then transported via portal circulation to the liver, where it is 

absorbed and metabolized to various polyglutamated derivatives, or released into the blood 

or bile primarily as 5-methyltetrahydrofolate (5-methyl-THF) (Shane 1995). After hepatic 

release of 5-methyl-THF into the blood, the folate derivative is bound by folate-binding 

proteins or albumins and transported to various tissues for use. Uptake of 5-methyl-THF into 
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Figure 1. Chemical structure of tetrabydrofolate and its various derivatives 
(reprinted from Molecular Genetics and Metabolism, Vol 71, Lucock, M., 
121-138, 2000, with permission from Elsevier). 

the cell is followed first by the removal of a methyl group by methionine synthase (MS) to 

generate THF, then the addition of several glutamate residues to the folate molecule by 

folylpolyglutamate synthase. This action serves to trap folate within the cell, where it is 

compartmentalized in the cytosol and mitochondria and readily converted to other folate 

derivatives. The addition of glutamate residues is also important for increasing the avidity of 

folate compounds for folate-dependent enzymes (Lucock 2000). Though trapped folate 

coenzymes and folate-dependent enzymes do not move freely between the two compartments 

within the cell, their metabolic products readily move between compartments as well as in 

and out of the cell (Bailey and Gregory 1999). 

The Folate-dependent One-carbon Pool 

Cellular folate coenzymes existing in metabolic equilibrium that have the ability to 

carry one-carbon units are collectively referred to as the folate-dependent one-carbon pool 
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(MacKenzie 1984). One-carbon units originating from the pool can undergo several redox 

reactions during folate metabolism (Figure 2). The oxidation-state of one-carbon units 

dictates both the position of the THF molecule to which they can bind as well as their 

biological function. Formate for example, binds to THF at the 10-position to form 10-

formyltetrahydrofolate (10-formyl-THF), which donates its one-carbon unit during the folate-

dependent de novo biosynthesis of the purine ring (Shane and Stokstad 1985). Conversely, 
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ix • ««rwMiMa ic » 

Figure 2. Folate-dependent one-carbon metabolism {reprinted from Molecular 
Genetics and Metabolism, Vol 71, Lucock, M., 121-138, 2000, with permission 
from Elsevier). 

a reduced derivative of formate, formaldehyde, binds to THF at both the 5- and 10-positions 

of THF to generate 5,10-methy lene-THF. 5,10-methylene-THF can then donate carbon units 

for three different purposes that include 1) the conversion of the pyrimidine uridylate to 

thymidylate by thymidylate synthase, a rate-limiting step in DNA synthesis, 2) reduction by 

5,10-methylenetetrahydrofolate reductase (MTHFR) to generate 5-methyl-THF, a folate 

coenzyme that is critical for the regulation of methyl group metabolism (Wagner et al. 1985) 

and the donation of methyl groups for the synthesis of methionine, or 3) oxidation by 5,10-

methylene-THF dehydrogenase to generate 5,10-methenyl-THF. 
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The following section describes the many other reactions that comprise folate-

dependent one-carbon metabolism in more detail and how one-carbon units enter the folate-

dependent one-carbon pool. 

Entrance of One-carbon Units Into the Folate-dependent One-carbon Pool 

There are five major folate-dependent one-carbon transfer reactions that occur in the 

mammalian cell: 1) conversion of serine to glycine, 2) catabolism of histidine, the synthesis 

of 3) thymidylate, 4) methionine, and 5) purine (Lucock 2000). Figure 2 illustrates the 

entrance of one-carbon units into the folate-dependent, one-carbon pool and the reactions that 

readily occur in the folate-dependent, one-carbon metabolism pathway. 

Amino acids are the primary source of one-carbon units that enter the folate-

dependent one-carbon pool with the major sources being serine and histidine (Wagner 1995). 

Serine enters the pool by transferring its formate group to THF to generate 5,10-methylene-

THF in a vitamin Independent reaction catalyzed by serine hydroxymethyltransferase 

(SHMT). The carbon unit from 5,10-methylene-THF is then used for the synthesis of 

thymidylate, oxidized to generate 5,10-methenyl-THF, or reduced to 5-methyl-THF. The 

methyl group from 5-methyl-THF is a particularly important substrate during methyl group 

metabolism because it is used for the remethylation of homocysteine in a B ̂ -dependent 

reaction catalyzed by methionine synthase (MS) to generate methionine, which serves as a 

major source of methyl groups in transmethylation reactions. Histidine, another amino acid, 

donates one-carbon units to the folate-dependent one-carbon pool that are generated from its 

catabolism. The histidine breakdown product formiminoglutamate enters the pool by binding 

to THF at the 5-position to form 5-formyltetrahydrofolate (5-formyl-THF), which can be 

reduced to 5,10-methenyl-THF by 5,10-methenyl-THF reductase. 

In addition to being donated by serine, formate can enter directly into the one-carbon 

pool as formic acid through a reaction catalyzed by 10-formyl-THF synthase, which attaches 

formic acid to THF at the lO-position, generating 10-formyl-THF in the process. The carbon 

group from 10-formyl-THF is used as a substrate during the synthesis of purines in reactions 

catalyzed by glycinamide ribonucleotide (GAR) transformylase and 5-amino-4-imidazole 

carboxamide ribonucleotide (AICAR) transformylase, respectively, or readily converted to 

5,10-methenyl-THF in a reversible reaction catalyzed by methenyl-THF cyclohydrolase. 
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During conditions where adequate one-carbon units are available in the one-carbon pool, the 

formate group of 10-formyl-THF is disposed of as CO2, in a reaction catalyzed by 10-formyl-

THF dehydrogenase (Kutzbach and Stokstad 1968). 

Clearly, the interrelated pathways of one-carbon metabolism are extremely complex 

and require a number of substrates and enzymes to function properly. The importance of 

these pathways with respect to methyl group metabolism will be focused on in greater detail 

below and will be one of the focal points of this thesis. 

Methyl Group Metabolism 

General Overview of Methyl Group Metabolism 

Methyl group metabolism refers to a group of tightly coordinated reactions that 

supply methyl groups for use in over 100 transmethylation reactions. Enzymes involved in 

methyl group metabolism are found in most organs, but all are prevalent in the liver, where 

the majority of methyl group metabolism regulation is believed to occur (Finkelstein 1990). 

Methionine, which is synthesized de novo or provided from the diet, serves as the source of 

methyl groups for transmethylation reactions. In a reaction catalyzed by methionine 

adenosyltransferase (MAT), an adenosine molecule is attached to methionine to generate 

SAM, thereby activating methyl groups for use in transmethylation reactions (Figure 3) 

(Cantoni 1982; Cantoni and Chiang 1980; Mudd 1963). SAM-dependent transmethylation 

reactions, approximately 85% of which are believed to occur in the liver (Mato et al. 1994), 

are required for the biosynthesis of macromolecules such as phospholipids, 

neurotransmitters, and polyamines, as well as for the methylation of proteins and nucleic 

acids (Cantoni 1982; Cantoni and Chiang 1980). Therefore, acquiring an adequate dietary 

supply of methyl groups is a critical aspect of maintaining optimal health. 

Following its donation of a methyl group for SAM-dependent transmethylation reactions, 

SAM is converted to S-adenosylhomocysteine (SAH), which is catabolized to generate 

homocysteine and adenosine by SAH hydrolase. The formation of homocysteine represents 

a metabolic branch point in the pathway because homocysteine is either remethylated to 

regenerate methionine or committed to the transsudation pathway for its catabolism. 
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Figure 3. Methyl group metabolism. 

During the remethylation process, methyl groups are utilized to remethylate homocysteine 

and generate methionine de novo by one of two methods: 1) addition of a methyl group from 

5-methyl-THF to homocysteine in a vitamin Bn-dependent reaction catalyzed by MS or 2) 

the addition of a methyl group by the choline derivative, betaine by betaine homocysteine 

methyltransferase (BHMT). Finkelstein and Martin (1984) reported that MS and BHMT, the 

latter being found primarily in the liver and kidney (Ueland and Refsum 1989), are equally 

important for the remethylation of homocysteine. The remethylation process ensures that the 

carbon chain of methionine is recycled for use in SAM-dependent transmethylation reactions 

multiple times (Eloranta et al. 1990). 

If homocysteine is not remethylated, it is committed to the transsulfuration pathway 

by cystathionine ^-synthase (C(5S) for its catabolism in a vitamin Be-dependent reaction that 

condenses homocysteine with serine to generate cystathionine (Finkelstein and Chalmers 

1970), a molecule that is required for the synthesis of the essential compounds cysteine and 
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glutathione. The removal of homocysteine through transsulfuration by CPS is critical for 

maintaining normal methyl group metabolism; this is because the conversion of 

homocysteine back to SAH is kinetically favored (Cantoni and Chiang 1980), and SAH 

inhibits not only transmethylation reactions (Kerr 1972), but also the remethylation of 

homocysteine (Finkelstein et al. 1974). 

Regulation of Methyl Group Metabolism 

Allosteric regulation 

The methyl group- and folate-dependent one-carbon metabolism pathways interact 

with each other to ensure an adequate supply of methyl groups is available for 

transmethylation reactions. In order to optimize the supply of methyl groups, a number of 

regulatory mechanisms exist between the two pathways that serve to normalize the methyl 

group supply when it fluctuates (Figure 4). During conditions of elevated intracellular 

methionine concentrations for example, an increase in the supply of SAM occurs (Henning 

Dimethylglycine THF 

-SAM BE 

Retain 

GNMT—fn MS 
• ... 1 sarcosine 

[omocysteine— g 

CPS|+SAM, glucagon, glucocorticoids 
I — insulin 

*MTH] 

5-methyl-THF 

5,10-methylene-THF 

Other THF 
coenzymes 

— insulin 

5 

Cystathionine 

Figure 4. Regulation of methyl group metabolism. 
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et al. 1989). The elevation of SAM concentrations produces numerous regulatory 

consequences because SAM acts as an allosteric effector of several enzymes that catalyze 

critical methyl group- and folate-dependent reactions. The modulation of enzymes in the 

pathway during conditions of increased SAM levels serves two important purposes that 

include, 1) the inhibition of the flow of unneeded methyl groups into the pathway from both 

de novo sources, betaine (Finkelstein and Martin 1984) and the folate-dependent one-carbon 

pool (Kutzbach and Stokstad 1971) and 2) the normalization of the supply of SAM by 

facilitating its catabolism (Ogawa and Fujioka 1982). The SAM-mediated inhibition of both 

BHMT activity (Finkelstein and Martin 1984) and the conversion of 5,10-methylene-THF to 

5-methyl-THF by MTHFR (Kutzbach and Stokstad 1967; 1971) diverts one-carbon units to 

where they can serve other important functions when there is an adequate supply of 

intracellular SAM for transmethylation reactions. With decreased 5-methyl-THF 

concentrations due to SAM-mediated inhibition of MTHFR, significant changes occur 

elsewhere in the methyl group metabolism pathway because 5-methyl-THF is an inhibitory 

ligand for glycine ^-methyltransferase (GNMT) (Wagner et al. 1985), a key cytosolic protein 

that regulates the SAM/SAH ratio by disposing of excess SAM as sarcosine (Kerr 1972), a 

molecule with no known metabolic function. Therefore, when cellular 5-methyl-THF levels 

are decreased, GNMT becomes more active (Balaghi et al. 1993) and serves to normalize 

SAM concentrations and the SAM/SAH ratio by facilitating the catabolism of SAM. The 

regulation of the SAM/SAH ratio by GNMT is critical because this ratio is considered an 

index of transmethylation potential due to the ability of SAH to be a potent inhibitor of most 

methyltransferases (Kerr 1972). Elevated SAM concentrations also allosterically activate 

CPS (Finkelstein and Martin 1986), which assists in the catabolism of SAM by committing 

the increased volume of SAM degradation products to the transsulfuration pathway, as 

previously described. 

Under conditions where SAM levels are decreased, highly coordinated mechanisms 

are in place to restore them. A decrease in SAM concentration releases MTHFR inhibition 

(Kutzbach and Stokstad 1967), which then facilitates the increased production of 5-methyl-

THF. Consequently, the folate-dependent remethylation of homocysteine and subsequent 

flow of methyl groups from the one-carbon pool into the methyl group metabolism pathway 
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for production of SAM increase. The rise in 5-methyl-THF concentrations also allosterically 

inhibits GNMT activity, which serves to slow the disposal of SAM in order to conserve it for 

other transmethylation reactions (Wagner et al. 1985). Additionally, BHMT inhibition is 

released as SAM concentrations decline (Finkelstein and Martin 1984), which can then aid in 

the regeneration of methionine through the remethylation of homocysteine. 

Hormonal modulation of methyl group metabolism 

Several hormones are known to regulate the expression of key enzymes involved in 

methyl group metabolism. Hormones known to modulate methyl group metabolism include 

glucagon, glucocorticoids, insulin, thyroxine (thyroid hormone), and growth hormone. 

Although many of the general mechanisms by which these hormones exert their actions are 

known, the physiological consequences of their actions with respect to methyl group 

metabolism are poorly understood. Recent evidence suggests that the modulation of methyl 

group metabolism by hormones occurs as a result of alterations of glucose metabolism 

(Jacobs et al. 1998; 2001 ; Ratnam et al. 2002; Xue and Snoswell 1985). 

Glucagon, glucocorticoids, and insulin. Hormones secreted at increased rates 

during a catabolic state (i.e. gluconeogenesis) such as glucagon and glucocorticoids (i.e. 

counter-regulatory hormones), appear to enhance the catabolism of methionine (Gil et al. 

1997; Jacobs et al. 1998; 2001; Ratnam et al. 2002). In tissue culture and rat studies, 

treatment with glucocorticoids hormones elevated the gene expression of MAT 3-fold (Gil et 

al. 1997), whereas glucocorticoid (Ratnam et al 2002) and glucagon (Jacobs et al. 2001) 

treatment increased CPS gene expression 1.5- and 2-fold, respectively. In all the described 

cases, treatment with insulin was effective in blocking the hormone-mediated induction of 

these enzymes. Additionally, CPS expression was elevated in streptozotocin-diabetic rats, 

animals that exhibit conditions consistent with elevated levels of counter-regulatory 

hormones, whereas insulin treatment was effective in preventing this occurrence (Ratnam et 

al. 2002). These findings suggest that the physiological consequences of up-regulated 

methionine metabolism may have significance during uncontrolled diabetes, during which 

insulin utilization is compromised and an increased circulating concentration of counter-
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regulatory hormones is unchecked. Because methionine serves as an important source of 

methyl groups, its increased catabolism could have a detrimental effect on SAM-dependent 

transmethylation reactions. Xue and Snoswell (1985) found that the disposal of methyl 

groups by GNMT was increased 65-fold in alloxan-diabetic sheep, suggesting that diabetic 

conditions do in fact lead to unwarranted loss of methyl groups; however, it has yet to be 

investigated whether the increased disposal of methyl groups GNMT compromises other 

SAM-dependent transmethylation reactions. 

Growth hormone and thyroxine. Associations between both thyroid (thyroxine) 

and growth hormones and the modulation of methyl group metabolism clearly exist, but are 

not well understood and contradictory. In animal studies, it appears that both hormones play 

an inhibitory role in the catabolism of methionine and its products, whereas the opposite 

effect usually occurs in humans. Animal experiments have demonstrated that the expression 

GNMT mRNA is decreased in growth hormone-treated mice (Aida et al. 1997). Moreover, 

Ames dwarf mice, animals that are deficient in growth hormone, prolactin, and thyroid 

stimulating hormone, exhibited symptoms consistent with elevated methionine catabolism 

including, increased activities of MAT (203%), CPS (50%), cystathionine y-lyase (83%), and 

GNMT (91%) (Uthus and Brown-Borg 2003). Similarly, hypothyroid rats have been shown 

to exhibit decreased plasma homocysteine levels, which appear to be normalized by 

treatment with thyroxine (Jacobs et al. 2000). Collectively, these reports clearly indicate that 

thyroid and growth hormones play an integral role in modulating methionine metabolism, 

although that role is unclear. Interestingly, thyroxine administration to rats has been shown 

to increase the activity of hepatic BHMT (Finkelstein et al. 1971), demonstrating that in 

addition to modulating the activity of enzymes involved in the transsulfuration pathway, 

thyroxine may modulate homocysteine levels through its effect on the remethylation 

pathway. 

In contrast to animal studies, human studies have demonstrated that growth hormone 

deficiency and hypothyroidism are conditions that appear to inhibit homocysteine catabolism 

(Sesmilo et al. 2001). Hussein et al. (1999) found that individuals suffering from 

hypothyroidism exhibited hyperhomocysteinemia, which was normalized by treatment with 
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thyroxine. Similarly, treatment with growth hormone has been shown to reduce elevated 

plasma homocysteine levels in patients with growth hormone deficiency (Sesmilo et al. 

2001). Because these findings contradict those from animal studies, it appears that animal 

models are not a useful tool for studying the role of growth hormone and thyroxine in the 

modulation of methyl group metabolism in humans. 

Dietary Requirements 

Folate Requirements 

Dietary Reference Intakes 

In 2000, the latest dietary reference intakes (DRIs) reported by the Food and Nutrition 

Board based folate recommendations on data that was collected from controlled metabolic 

studies where blood folate concentrations were measured, and from data collected in 

population-based studies [Food and Nutrition Board (FNB) 2000]. DRI values for folate are 

expressed as dietary folate equivalents (DFE), where 1 DFE = 1 p,g food folate = 0.6 (ig of 

folic acid from fortified food or as a supplement consumed with food = 0.5 jug of a folic acid 

supplement taken on an empty stomach (FNB 2000). Folic acid refers to the synthetic 

derivative of folate, which has been shown to be more bioavailable than naturally occurring 

food folate, presumably due to the greater instability of food folate (O'Broin, et al 1975). 

Folate DRIs include a recommended daily allowance (RDA) that advises a minimum daily 

intake DFE for all age groups [except for infants (0-12 months)], including pregnant and/or 

lactating adults. Regardless of gender, once individuals reach age 14 years old, the RDA (400 

DFE per day) remains constant in males and non-pregnant females. For pregnant and 

lactating adults, the RDA for folate is 600 and 500 DFE, respectively. Infants' daily 

requirements are expressed as adequate intakes (AI), which equals the DFE of folate an 

infant must consume daily in order to meet the requirements of the individuals in a particular 

infant age group. For infants 0-6 months of age, the AI of folate is 65 DFE, which increases 

to 80 DFE as infants reach the 7-12-month age group (FNB 2000). In addition to RDA and 

AI values, the DRIs for folate include an upper limit (UL), which is defined as the maximal 

daily nutrient intake that is likely to pose no risk of adverse effects (FNB 2000). In the case 
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of folate, an UL is listed because excessive consumption can mask symptoms of vitamin Bi2 

(i.e. cobalamin) deficiency while neurological damage due to vitamin B12 deficiency is 

allowed to progress undetected (FNB 2000). With pregnancy and lactation being exceptions, 

the RDA and UL for folate increases with age (300-800 DFE) then becomes stable (1000 

DFE) when individuals reach 19 years of age. 

Folate requirements during pregnancy 

A strong correlation between low folate status and an elevated incidence of neural 

tube defects (NTDs) has been well documented (Mulinare et al. 1988; Werler et al. 1993; 

Milunsky et al. 1989). Vital biological processes that occur during fetal development 

requiring folate-dependent reactions include cell division, neural tube closure of the 

developing fetus during pregnancy, and a number of reactions requiring methyl groups. Out 

of an estimated 4000 pregnancies in the U.S. that are affected with NTDs each year, it is 

currently believed that 50% or more can be prevented by consuming a folic acid-containing 

supplement before and during the early weeks of pregnancy in addition to meeting dietary 

folate requirements [American Academy of Pediatrics (AAP) Committee on Genetics 1999]. 

In order to decrease the incidence of NTDs in women who have no history of a previous 

NTD-affected pregnancy as well as those women who have had a child with a NTD, new 

recommendations for folate consumption were developed by the US Public Health Service 

(USPHS) and Centers for Disease Control and Prevention (CDC) (CDC 1991; 1992). The 

USPHS recommendation for folate intake by women with no prior NTD-affected pregnancy 

who are of childbearing age is 400 pg of folic acid per day in addition to the dietary 

requirement (RDA) of400 DFE from food (CDC 1991; 1992). These recommendations have 

been endorsed by the AAP (AAP Committee on Genetics 1999). For those women who have 

had NTD-affected pregnancies, the recommendation is a 4000 ng daily dosage of folic acid, 

which should not be consumed through the taking of over-the-counter folic acid-containing 

prescription multivitamins due to toxicity issues involving other nutrients (CDC 1991; 1992). 

The AAP recommended that these women should be offered prophylaxis (4000 |ig DFE) one 

month before the time they plan to become pregnant and throughout the first 3 months of 

pregnancy (AAP Committee on Genetics 1999). However, these new recommendations may 



www.manaraa.com

15 

reflect a need to review and perhaps redesign the current DRIs for pregnancy because the 

requirements endorsed by the AAP obviously differ from the current RDA of 600 DFE per 

day. 

Methyl Group Requirements 

Methyl groups that are utilized for SAM-dependent transmethylation reactions 

originate from the folate-dependent one-carbon pool or from essentially two dietary sources, 

methionine and choline. Methionine, an abundant essential amino acid in protein, is very 

toxic if consumed excessively (Benevenga and Steele 1984) and no dietary recommendations 

are currently in place for its consumption. However, as with all of the other essential amino 

acids, it is a reasonable assumption that daily protein requirements should be met to ensure 

that an adequate supply of methionine is consumed. An AI for choline is included in the 

current DRIs, although there are few data to assess whether a dietary supply is needed at all 

stages of the life cycle (FNB 2000). The AI for choline is 125-150 mg/day for infants and 

increases throughout childhood (200-250 mg/day) into adulthood, where the requirement is 

greater for males than for females (FNB 2000). According to the latest DRIs, the AI for 

adult males is 550 mg/day, whereas three separate AI classifications for female requirements 

exist. These classification groups include women that are non-pregnant and non-lactating, 

pregnant, or lactating (FNB 2000). The adult AI for non-lactating, non-pregnant women is 

425 mg/day (FNB 2000). During pregnancy the AI is increased to 450 mg/day, whereas 

lactation increases the requirement to 550 mg/day (FNB 2000). 

One-Carbon Metabolism in Health and Disease 

General Overview 

Diseases related to folate and/or methyl group deficiency can be catastrophic. As 

discussed previously, methyl group- and folate-dependent one-carbon metabolism are 

interrelated pathways that involve a large number of enzymes and metabolites that play 

major roles in sustaining life processes. The synthesis of nucleic acids, phospholipids, 

neurotransmitters, and polyamines, along with functions such as the methylation of DNA and 
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neural tube closure in the fetus, all require folate and methyl groups in some capacity. In 

addition to a lack of folate and sources of methyl groups in the diet, deficiencies of vitamin 

B12 or vitamin B&, a number of drugs, such as anticonvulsants, oral contraceptives, retinoid-

containing acne medications, and numerous environmental toxins can all perturb one-carbon 

metabolism reactions. Moreover, several genetic polymorphisms of enzymes and metabolic 

diseases, such as diabetes mellitus, have been implicated as factors that have a major impact 

on folate and/or methyl group requirements. 

Neural Tube Defects 

The role of folate and methyl group metabolism during fetal development is 

important for developing dietary recommendations for the prevention of birth defects, 

namely NTDs (Coelho et al. 1989; Coelho and Klein 1990; Lau and Li 1995; Kirke et al. 

1993). NTDs, caused by congenital defects such as spina bifida, anencephalus 

(approximately 50% and 40% of cases, respectively), encephalocele, and iniencephaly (Scott 

et al. 1990), make up approximately 1 of 1000 births in the United States (AAP Committee 

on Genetics 1999) and are influenced by a number of nutritional factors, especially folate-

and methyl group metabolism. Poor nutrition can lead to the perturbation of one-carbon 

metabolism, which, in turn, may lead to the inhibition of essential processes required for fetal 

development such as DNA synthesis and methylation, polyamine and phospholipid synthesis, 

and the post-translational modification of myelin basic protein, a protein required for neural 

tube closure (Benjamins et al. 1984; Chiang, et al. 1996). 

The identification of folate as a dietary factor that clearly influences the outcome of 

pregnancies has been known for over 50 years. In 1949, it was first observed that rats kept 

on diets deficient in folic acid prior to gestation exhibited 100% resorption of their fetuses 

(Nelson and Evans 1949). Soon after, similar findings were reported in human studies, 

where spontaneous abortions occurred in individuals that unknowingly consumed folic acid 

antagonists prior to gestation (Thiersch 1952; Goetsch 1962). Findings such as these have 

helped spark intense research to determine the importance of folic acid supplementation 

during pregnancy. Data collected from case-control (Mulinare et al. 1988; Werler et al. 1993) 

and prospective (Milunsky et al. 1989) studies have provided strong evidence that folic acid 
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supplementation during periconception, a six-month period including three months prior 

through three months after conception, results in a significant decline in the incidence of 

NTD-affected pregnancies. These findings contributed to the 1992 decision of the USPHS to 

recommend that all reproductive-aged women capable of becoming pregnant should consume 

a daily dose of 400 jig of folic acid (CDC 1992) in addition to DFE consumed in the diet. 

However, this recommendation proved to be a failure. In fact, by 1998 only 29% of women 

in the United States were following the USPHS recommendation for folic acid consumption 

(CDC 1999). As a result, the United States Food and Drug Administration (USFDA) 

authorized mandatory folic acid fortification of grain products in the United States effective 

1998, which is believed to have led to a 19% reduction in the incidence of NTDs (Honein et 

al. 2001). 

Although the association between folate deficiency and alterations of embryogenesis 

is almost indisputable, the mechanistic link between folate deficiency and the increased 

incidence of NTDs is a topic of ongoing debate. It is well established that folate-dependent 

reactions are required for the synthesis ofDNA and cell division during fetal development; 

however, current evidence suggests that abnormalities of other aspects of one-carbon 

metabolism associated with folate deficiency, such as hyperhomocysteinemia (Steegers-

Theunissen 1994), play a significant role in the etiology of NTDs. Because folate is required 

for maintaining normal homocysteine concentrations (Brattstrom et al. 1988), it is possible 

that folate supplementation reduces the incidence of NTDs through its role in the 

remethylation pathway. Interestingly, a deficiency of vitamin Bi2, a nutrient also required for 

the remethylation of homocysteine, has been implicated as an independent risk factor for 

NTDs (Daly et al. 1995). Additionally, genetic polymorphisms that produce deficiencies of 

C|3S and MTHFR, enzymes that play central roles in homocysteine metabolism, have been 

strongly associated with an increased incidence of NTDs (Engbersen et al. 1995; Mills et al. 

1995; Christensen et al. 1999). Thus, monitoring plasma homocysteine and screening for 

genetic polymorphisms during pregnancy may be useful strategies for decreasing the 

incidence of NTDs in addition to dietary intervention with folic acid (Brattstrom et al. 1988), 

vitamin Bn (Kirke et al. 1993), and vitamin B& supplementation (Cuskelly et al. 2001). 
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The inverse relationship between plasma homocysteine levels and the incidence of 

NTDs may also be related to the maintenance of normal methionine concentrations by folate-

dependent remethylation (Eskes 1998). In vitro studies using embryo cultures and in vivo 

models have demonstrated that methionine is essential for neural tube closure (Coelho et al. 

1989; Essien and Wannberg 1993). Likewise, additional methionine in the diet has been 

shown to decrease the incidence of NTDs in mice administered retinoid compounds (Lau and 

Li 1995), which are known to be teratogenic with respect to fetal development (Lammer et 

al. 1985) perhaps because of their ability to enhance the catabolism of methionine (Peng and 

Evenson 1982; Schalinske and Steele 1991) and alter the distribution of folate coenzymes in 

the folate-dependent one-carbon pool (Fell and Steele 1986). As discussed previously, 

methyl groups provided by methionine and the folate-dependent one-carbon pool are 

activated to SAM for use in transmethylation reactions, many of which are required during 

fetal development, including polyamine and phospholipid synthesis (Chiang et al. 1996), as 

well as the post-translational modification of myelin basic protein (Benjamins et al. 1984; 

Chiang et al. 1996). Because adequate folate status is essential for the maintenance of 

normal SAM concentrations (Balaghi et al. 1993), a lack of folate coenzymes that are 

capable of transferring methyl groups during the de novo synthesis of SAM may therefore be 

responsible, at least in part, for the increased incidence of NTDs due to folate and folate-

dependent enzyme deficiencies. 

Hyperhomocysteinemia and Cardiovascular Disease 

Hyperhomocysteinemia as a risk factor for cardiovascular disease 

Cardiovascular disease (CVD) is the leading cause of mortality in the United States 

according to the latest report by the CDC using data collected from 2001 (United States 

Department of Health and Human Services 2003). Hyperhomocysteinemia has recently been 

added to the list of other commonly known risk factors for CVD such as hypertension, 

elevated low-density lipoprotein (LDL) concentrations, and smoking (Clarke et al. 1991). 

Research that led to the identification of hyperhomocysteinemia as a risk factor for CVD 

began over 30 years ago when homocysteine was in question as a possible underlying factor 

in the development of vascular lesions in an infant with abnormal vitamin Bn metabolism 
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and homocystinuria (McCully 1969). Since then, growing evidence has strongly associated 

hyperhomocysteinemia with vascular lesions and premature development of CVD (McCully 

and Wilson 1975; Brattstrom et al. 1992; Kang et al. 1986; Clarke et al. 1991). In 1991, 

Clarke et al. (1991) examined patients who were diagnosed with vascular disease before age 

55 and found that homocysteine levels were 33% higher in those with vascular disease than 

in control subjects following a standard methionine-loading test. 

Strong evidence exists that implicates homocysteine as an atherogenic compound. 

For example, direct administration of homocysteine thiolactone produces severe 

arteriosclerosis in rabbits (McCully and Ragsdale 1970), but the exact mechanism by which 

the molecule causes vascular dysfunction is not known. In a recent review, Haynes (2003) 

concluded that increased plasma homocysteine levels have the potential to mediate several 

atherogenic effects, including increased oxidative stress, impaired endothelial function, 

stimulation of mitogenesis, and induction of thrombosis. 

Regulation of homocysteine metabolism 

In order to maintain normal concentrations of plasma homocysteine, a highly 

coordinated system for homocysteine removal is in place. As previously mentioned, 

homocysteine is metabolized via three separate reactions: 1) vitamin Bg-dependent 

conversion of homocysteine to cystathionine by CpS followed by catabolism through the 

transsudation pathway, 2) folate- and vitamin B^-dependent remethylation by MS, and 3) 

betaine-dependent remethylation by BHMT, a reaction confined primarily to the liver and 

kidney (Finkelstein 1990). It has been reported that under normal conditions, approximately 

46% of homocysteine is committed to the transsudation pathway by CPS, with the rest 

being remethylated by MS and BHMT (approximately 27% and 27%, respectively) 

(Finkelstein and Martin 1984). A recent study demonstrated that homocysteine levels are also 

inversely related to the activity of phosphatidylethanolamine M-methyltransferase (Noga, et 

al. 2003), an enzyme responsible for the conversion of phosphatidylethanolamine to 

phosphatidylcholine, a source of choline that can serve as a source of three methyl groups for 

the betaine-dependent remethylation of homocysteine via BHMT. 
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Although CPS is responsible for removing the majority of circulating homocysteine 

compared to MS and BHMT, coordination between all three of these enzymes is crucial for 

the maintenance of normal homocysteine metabolism. In certain cases, a deficiency of one of 

the enzymes needed for the removal of homocysteine results in homocysteinemia, indicating 

that all three must function optimally to maintain normal homocysteine levels and 

compensation needed for the removal of excess homocysteine by complementary enzymes is 

limited. 

Enzyme deficiencies due to polymorphisms of CPS and MTHFR, as well as 

nutritional deficiencies or defects in the transport of folate, vitamin Be (i.e. pyridoxal 

phosphate), and/or vitamin B12, drugs, and metabolic diseases are among the conditions that 

have been associated with elevated homocysteine concentrations (Green and Jacobsen 1995). 

Deficiencies of folate, vitamin Be (i.e. pyridoxal phosphate), and/or vitamin B12 can also 

exacerbate abnormal methyl group metabolism caused by preexisting genetic conditions 

(Kluitmans et al. 2003). Taken together, the complexity of coordinating the activity of a 

number of enzymes and maintaining adequate nutritional status imparts a large number of 

potential causes for perturbation of homocysteine metabolism. In the following section, the 

causes and treatments of hyperhomocysteinemia with respect to metabolic disorders and 

nutrition will be reviewed in greater detail. 

Etiology of Hyperhomocysteinemia 

Enzyme deficiencies 

Cystathionine (3-synthase (CPS) polymorphisms. As discussed previously, CpS 

catalyzes the condensation of homocysteine and serine in a vitamin Be-dependent reaction 

that produces cystathionine, committing homocysteine to the transsulfuration pathway for its 

catabolism in the process. A deficiency of CpS, usually caused by a 68-bp insertion between 

nucleotide 844 and 845 of the CpS gene (Sebastio et al. 1995), is the most common inborn 

error of methionine metabolism, occurring in 1 in 200,000 of the general population 

worldwide (Selhub and Miller 1992). This particular CpS mutation has been called a 

"classical congenital disorder" because it is inherited as an autosomal recessive trait 
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(Kluitjmans et al. 1999) and results in the blocking of the transsulfuration pathway 

(Finkelstein et al. 1964). 

The importance of CpS during the removal of excess homocysteine has been 

examined by Finkelstein and Martin (1984), who demonstrated in vitro that compared to 

BHMT and MS, CpS plays a much larger role in the removal of homocysteine when the flux 

through the methyl group metabolism pathway is increased. Therefore, it is not surprising 

that individuals with CpS deficiency are at an increased risk for developing severe 

hyperhomocysteinemia (Boddie et al. 1998; Silaste et al. 2001), cardiovascular disease 

(Ueland and Refsum 1989), and vascular dysfunction (Lentz et al. 2000). Likewise, 

individuals with CpS deficiency are more likely to suffer from other conditions that are 

consistent with hyperhomocysteinemia including, skeletal anomalies, mental retardation, and 

dislocation of the optic lens (Ueland and Refsum 1989). 

Complications associated with CPS deficiency are exacerbated when combined with 

folate deficiency (Lentz 2000), a condition that simultaneously down-regulates the 

remethylation system and contributes to elevated plasma homocysteine concentrations (Jacob 

et al. 1994; Cuskelly et al. 2001). Folate deficiency may also contribute to homocysteinemia 

during CPS deficiency by indirectly leading to the enhanced catabolism of dietary 

methionine. A decline in the supply of 5-methyl-THF releases its inhibition of GNMT and as 

a result, increases the catabolism of SAM (Wagner et al. 1985). With the resulting elevation 

of GNMT activity, an increased production of methionine degradation products occurs and 

homocysteine levels are allowed to build up uncontrollably because defective CPS cannot 

commit homocysteine to the transsulfuration pathway and folate is unavailable for its 

remethylation (Selhub 1999). Similarly, when there is an adequate supply of folate, CpS 

deficiency still can cause hyperhomocysteinemia, but folate-dependent remethylation helps 

alleviate the buildup of homocysteine due to CpS deficiency because homocysteine can be 

diverted toward the remethylation pathway when homocysteine concentrations build up 

(Selhub 1999). However, the diversion of homocysteine toward the folate-dependent 

remethylation pathway during CpS deficiency is only transient. With CPS deficiency, the 

inhibition of the transsulfuration pathway leads to increased SAM concentrations (Selhub 

1999). As SAM concentrations reach the level where it is able to cause feedback inhibition 
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of MTHFR, inhibition of the remethylation system occurs and hyperhomocysteinemia is the 

end result. 

Methylenetetrahydrofolate reductase (MTHFR) polymorphisms. Hyperhomo

cysteinemia has been implicated as the underlying cause of extensive abnormalities in the 

arterial bed (Harmon et al. 1996), vascular thrombosis (Kanwar et al. 1976), and coronary 

artery disease (Kang et al. 1988) in cardiovascular patients carrying a mutation of the 

MTHFR gene. The two most common mutations of the MTHFR gene include base pair 

substitutions at either bp 677, which is associated with hyperhomocysteinemia (Goyette et al. 

1995), or bp 1298, which apparently has little or no influence on homocysteine 

concentrations (Friedman, et al. 1999). The mutation of the MTHFR gene at bp 677 resulting 

from a C->T substitution (C677T) is commonly referred to as "thermolabile" MTHFR, due 

to its instability at increased temperatures. Like Cj3S deficiency, the C677T mutation of 

MTHFR is autosomal recessive and has been associated with homocysteinemia (Engbersen, 

et al. 1995) and cardiovascular disease (Kang, et al. 1988; Engbersen, et al. 1995) in 

individuals with the homozygotic genotype. The C6777T mutation of MTHFR is more 

prevalent than C(3S deficiency however, with the homozygotic genotype (T/T) occurring in 

-12% of caucasian and asian populations (Brattstrom et al. 1988; Frosst et al. 1995). 

Individuals carrying the homozygotic genotype appear to be more prone to elevated 

homocysteine levels than individuals carrying the heterozygotic (C/T) genotype for the 

C677T mutation (Silaste et al. 2001; Kluijtmans et al. 2003). 

Unlike CpS deficiency where the cause of homocysteinemia has been established, the 

mechanism by which MTHFR deficiency causes hyperhomocysteinemia is not well 

understood. Recent evidence suggests that low folate status in combination with MTHFR 

deficiency leads to hyperhomocysteinemia (Bostom, et al. 1996; Meleady, et al. 2003). 

Likewise, researchers have discovered that individuals with the T/T mutation are more likely 

to exhibit significantly lower baseline plasma and red cell folate levels than individuals 

carrying the T/C or C/C genotypes (Kluijtmans et al. 2003; Meleady, et al. 2003). 

Furthermore, Nelen et al. (1998) and Silaste et al. (2001) found that folate supplementation 

was not as effective in improving folate status in T/T individuals when compared to the T/C 



www.manaraa.com

23 

and C/C genotypes, but was effective in normalizing their homocysteine concentrations. 

These findings suggest that individuals suffering from MTHFR deficiency may need to 

consume supplemental folate in order to maintain adequate MTHFR activity. In a recent 

review, Bailey and Gregory (1999) proposed that when folate status is adequate, normal 

plasma homocysteine levels should be maintained, independent of genotype. Therefore, 

individuals with thermolabile MTHFR may require folate supplementation in order to 1) 

supply 5-methyl-THF for remethylation of homocysteine by bypassing the MTHFR reaction 

and/or 2) to provide excess folate substrates to ensure that a dysfunctional MTHFR enzyme 

is able to produce an adequate supply of 5-methyl-THF. 

Methionine synthase (MS) and betaine:homocysteine methyltransferase (BHMT) 

polymorphisms. Recent studies that have examined the correlation between MS and 

BHMT function and homocysteine metabolism have provided convincing evidence that 

suggests genetic mutations of neither MS (Jacques et al. 2003; Harmon et al. 1999; Chen et 

al. 2001; Hyndman et al. 2000) nor BHMT (Weisberg et al. 2003) are associated with 

hyperhomocysteinemia and cardiovascular disease. In fact, the most common mutation of 

MS, which is a result of the substitution of a glycine residue for an aspartic acid residue at 

base pair 2756 (A2756G), has been paradoxically associated with a decrease in plasma 

homocysteine concentrations (Chen et al. 2001). Additionally, it has been reported that 

carriers of the 2756 A->G mutation are less likely to suffer from cardiovascular disease than 

individuals with the normal genotype (Hyndman et al. 2000). 

Although no underlying mechanism has been elucidated concerning the correlation 

between MS deficiency and reduced homocysteine concentrations, it has been demonstrated 

that individuals carrying the A2756G mutation of MS exhibited elevated cystathionine levels 

when compared to the wild-type controls (Geisel et al. 2001) indicating that the removal of 

homocysteine by CPS and the transsulfuration pathway is increased during MS deficiency. 

One possible explanation for this occurrence is that a deficiency of MS results in a 

substantial build up of 5-methyl-THF levels due to the inability of MS to remethylate 

homocysteine. Because the conversion of 5,10-methylene-THF to 5-methyl-THF by 

MTHFR is an irreversible reaction (Kutzbach and Stokstad 1967; 1971), a deficiency of MS 
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could cause folate to be "trapped" as 5-methyl-THF. As 5-methyl-THF concentrations rise, 

it becomes readily available to allosterically inhibit the GNMT-dependent conversion of 

SAM to S AH, increasing SAM concentrations in the process. Therefore, homocysteine levels 

would be expected to decline considerably because increased levels of SAM, which is an 

allosteric activator of CpS, facilitate the catabolism of existing homocysteine through the 

transsulfuration pathway (Finkelstein and Martin 1986). 

Nutrient deficiency and environmental factors 

Nutrient deficiency. Deficiencies of folate, vitamin Bn, and/or vitamin Be have 

significant implications for the development of hyperhomocysteinemia. Folate and vitamin 

Bn are nutrients that are required for remethylation of homocysteine, and a deficiency of 

these nutrients has been associated with increased plasma concentrations of homocysteine 

and an increased risk for developing coronary artery disease, presumably due to insufficient 

remethylation (Kang et al. 1987; Jacob et al. 1994; Bostom et al. 1996; Selhub et al. 1993; 

Pancharuniti et al. 1994; Voutilainen et al. 2000). Likewise, vitamin Be deficiency has also 

been associated with moderate hyperhomocysteinemia (Cuskelly et al. 2001). Because 

vitamin Be is a cofactor for CpS and cystathionine y-lyase during the catabolism of 

homocysteine through the transsulfuration pathway, it seems likely that vitamin B&-

deficiency would perturb the enzymatic function of CpS and cystathionine y-lyase, and 

produce a concomitant rise in homocysteine levels. Interestingly, vitamin Be-deficiency has 

been recently identified as an independent risk factor for stroke and transient ischemic attack, 

independent of its role in the transsulfuration pathway (Kelly et al. 2003). 

Because a number of B vitamins are required for homocysteine metabolism, it seems 

plausible that a supplement containing a B vitamin complex including folate, vitamin Bn, 

and vitamin Be would be useful in the treatment of hyperhomocysteinemia. Supplementation 

with these vitamins has been effective in normalizing plasma homocysteine concentrations 

when they were given alone (Brattstrom et al. 1988; Shimakawa et al. 1997). Another 

relatively effective strategy for reducing homocysteine levels has been supplementation with 
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betaine, which has been shown to reduce homocysteine concentrations as long as the 

compound is continuously administered (Steenge et al. 2003). 

Pharmacological agents. A number of medications are known to produce increased 

plasma homocysteine levels. Drugs that are known to impair folate metabolism, such as 

antiepileptics (Schawninger et al. 1999), oral contraceptives (Steegers-Theunissen et al. 

1992), and the antifolate drug methotrexate (Refsum et al. 1989) have been linked to elevated 

plasma homocysteine concentrations. Additionally, Schulpis et al. (2001) recently 

discovered that the retinoid-containing oral acne medication, isotretinoin (13-cw-retinoic 

acid) elevated plasma homocysteine concentrations in patients treated for cystic acne, an 

occurrence that the authors suggested may have been caused by an inhibition of CPS activity 

resulting from liver dysfunction, which is a common side effect of the drug. 

Diabetes mellitus. The number one complication of diabetes is cardiovascular 

disease (Anderson 1999). Long-term exposure to hyperglycemia associated with 

uncontrolled diabetes results in enhanced glycosylation and modification of proteins, thereby 

playing a role in atherosclerosis and microvascular complications such as nephropathy and 

retinopathy. Hyperhomocysteinemia is also believed to contribute to heart disease in 

diabetics (Munshi et al. 1996). Evidence suggests that hyperhomocysteinemia is prevalent in 

diabetics with compromised renal function (Poirier et al. 2001 ; Robillon et al. 1994). 

Because renal tubular epithelial tissue is believed to play a major role in the metabolism of 

homocysteine (Foreman et al. 1982), damage to this tissue may inhibit the removal of 

homocysteine from the blood (Robillon et al. 1994). Recent evidence suggests that 

hyperhomocysteinemia due to renal failure may also be due to altered remethylation of 

homocysteine due to decreased MTHFR activity in the kidney (Poirier et al. 2001). 

The importance of the kidney in homocysteine metabolism is further explained in 

diabetics who are not suffering from nephropathy. The opposite effect (i.e., enhanced 

homocysteine metabolism) commonly occurs in these diabetics, and homocysteine levels are 

reduced when compared with non-diabetic subjects (Cronin et al. 1998). It has been 

postulated that the enhanced metabolism of plasma homocysteine in these diabetics is due to 
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renal hyperfusion and increased homocysteine catabolism in the renal tubular epithelium 

(Robillon et al. 1994). 

Growing evidence suggests that the hormonal up-regulation of the transsulfuration 

pathway by counter-regulatory hormones (i.e., glucagon and glucocorticoids) also plays a 

major role in reducing circulating homocysteine levels during diabetes (Jacobs et al. Ratnam 

et al. 2002). Variations of circulating insulin levels as well as surging counter-regulatory 

hormone concentrations in the plasma are common complications associated with 

uncontrolled diabetes. During uncontrolled diabetes, counter-regulatory hormones are 

released into the bloodstream as a result of insufficient glucose uptake and cellular utilization 

caused by either poor insulin production by the pancreas or insulin insensitivity. The ability 

of counter-regulatory hormones to produce a catabolic state contributes to the complications 

of diabetes by causing substrates, such as glucose and fatty acids, to be released into the 

bloodstream in an effort to compensate for insufficient cellular glucose utilization. Recent 

studies have demonstrated that increased counter-regulatory hormone levels also have the 

ability to up-regulate homocysteine catabolism by increasing gene expression of key 

enzymes involved in the transsulfuration pathway (Jacobs et al. 1998; Jacobs et al. 2001 ; 

Ratnam et al. 2002). Jacobs et al. (2001) reported that glucagon administration to rats led to 

a 30% decrease in plasma homocysteine levels and a concomitant 75 and 29% increase in 

hepatic CpS and cystathionine y-lyase activity, respectively. The increase in CpS activity in 

these animals was reflected by increased abundance of both CPS mRNA and protein, 

occurrences that were prevented by insulin treatment, indicating that modulation of CPS by 

glucagon occurs, at least in part, at the transcriptional level. In an expansion of the 

experiments with glucagon, Ratnam et al. (2002) demonstrated that glucocorticoid-treated 

H4IIE rat hepatoma cells and livers of streptozotocin-diabetic rats also exhibited an increase 

of CpS protein and mRNA abundance. Similar to the studies with glucagon-treated rats, 

induction of CPS protein and mRNA abundance in rats and hepatoma cells by 

glucocorticoids was prevented by insulin treatment. Moreover, treatment of Hep G2 human 

hepatoma cells with insulin also reduced CPS mRNA levels. Taken together, these findings 

clearly indicate that CPS expression can be modulated at the transcriptional level by 

hormonal factors that are central to glucose metabolism. 
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In addition to inhibiting the removal of homocysteine through the transsulfuration 

pathway, insulin appears to have a similar effect on the remethylation system. Dicker-Brown 

et al. (2001) demonstrated in Hep G2 cells that insulin inhibited both C|3S and MTHFR 

activity in a similar fashion, making it apparent that insulin inhibits the two major pathways 

of homocysteine metabolism. Therefore, it is possible that diabetics with renal failure who 

are on insulin therapy may be at an increased risk for extreme cases of hyperhomo

cysteinemia. 

Carcinogenesis 

Hypomethylated DNA 

An adequate dietary supply of folate and methyl groups has long been known to be 

essential for the prevention of cancer (Newberne and Rogers 1986). Diets that are deficient 

in methyl groups have been shown to lead to the spontaneous development of 

hepatocarcinogenesis in rats (Salmon and Copeland 1954; Ghoshal and Farber 1984). 

Although it is not totally clear how methyl deficiency induces carcinogenesis, several studies 

have discovered a strong correlation between impaired methylation of DNA and increased 

cancer incidence in methyl-deficient animals (Wainfan et al. 1989; Bhave et al. 1988; 

Wainfan and Poirier 1992). The methylation of DNA is believed to have a significant role in 

the prevention of neoplastic development through its ability to control gene expression (Jones 

and Takai 2001) and stabilize chromosomes (Baylin, et al. 1998). Bhave et al. (1988) 

examined the importance of DNA methylation in the prevention of hepatocarcinogenesis and 

discovered an increased incidence of hypomethylated oncogenes in methyl deficient rats. 

Oncogenes represent regions of DNA where increased gene expression is associated with 

uncontrolled cell replication and tumor development, and hypomethylation of these regions 

has been positively correlated with their expression in rats (Wainfan and Poirier 1992). 

S AH and DNA hypomethylation 

Hypomethylated DNA due to a deficiency of activated methyl groups (i.e., SAM) has 

been postulated to be partially responsible for tumor formation in liver tissue (Pascale et al. 
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1992); however, recent evidence argues that the intracellular concentration of S AH may be 

the most sensitive biomarker for cellular methylation status (Caudill et al. 2001). It is known 

that a deficiency of methyl groups results in a decrease of hepatic SAM concentrations and 

the SAM/SAH ratio, and a concomitant rise in hepatic S AH levels (Shivapurkar and Poirier 

1983). Because S AH inhibits most methyl transfer reactions (Kerr 1972), increased S AH 

levels have obvious implications for the inhibition of DNA methylation. In fact, it has 

recently been reported that CpS heterozygous mice with elevated hepatic S AH 

concentrations exhibit global DNA hypomethylation in the liver (Caudill et al. 2001). The 

conversion of homocysteine back to S AH is kinetically favored, therefore; inhibition of DNA 

methylation could be an indirect consequence of increased homocysteine concentrations. 

Hypomethylated DNA has also been discovered in folate-deficient rats (Balaghi and Wagner 

1993), animals that may have experienced increased homocysteine levels due to decreased 

folate-dependent remethylation, a common occurrence during folate deficiency (Kang 1987). 

Hence, increased homocysteine levels and the simultaneous decrease of de novo methionine 

synthesis due to folate deficiency may inhibit DNA methylation by 1) decreasing the supply 

of available methyl groups for the methylation of DNA and/or by 2) increasing S AH levels. 

DNA strand breaks 

It has been hypothesized that DNA strand breaks, which are known to occur as a 

result of genomic instability (Piyathilake and Johanning 2002), lead to the induction of 

carcinogenesis during methyl group- and/or folate deficiency (Blount et al. 1997). Evidence 

suggests that this occurrence may be related to structural changes of DNA resulting from a 

dUTP substitution for dTTP during DNA synthesis (Duthie et al. 2002; Kim et al. 1997; 

Blount et al. 1997) or from cytosine deamination to dUTP in existing DNA (Lindahl 1993). 

As described earlier, the conversion of uridylate to thymidylate requires the donation of a 

methylene group from the folate derivative 5,10-methylene-THF. Thus, a deficiency of this 

folate coenzyme may cause imbalances in the DNA precursor pool and lead to an increased 

incidence of dUTP incorporation into DNA and subsequent strand breakage (Blount et al. 

1997). 
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The regions of DNA where strand breaks occur appears to be a significant factor that 

determines whether or not they contribute to neoplastic development. For instance, it is 

known that strand breaks occurring at the region of DNA encoding the p53 tumor suppressor 

gene readily occur during folate deficiency (Kim et al. 1997). Strand breaks at the p53 gene 

have been linked to neoplastic development in the colon and esophagus (Hollstein et al. 

1991). Moreover, strand breaks and uracil misincorporation into the p53 gene of hepatic 

DNA have been shown to be prevalent in folate/methyl-deficient rats exhibiting 

preneoplastic hepatic lesions (Pogribny et al. 1997). 

Hepatocarcinogenesis and methyl group deficiency 

The liver possesses high levels of enzymes involved in one-carbon metabolism 

(Finkelstein 1990). Therefore, it seems likely that if certain cancers were caused by a 

perturbation of one-carbon metabolism, they would be present in the liver. Aberrant one-

carbon metabolism due to malnutrition may be a major contributor to hepatocarcinogenesis 

in humans (Giovannucci et al. 1993). Additionally, epidemiological and clinical evidence 

suggests that the consumption of foods contaminated with carcinogens, such as mycotoxins, 

some of which are known to perturb one-carbon metabolism (Ueno et al. 1997), leads to the 

high prevalence of hepatocarcinogenesis in regions where food-borne fungi are more 

prevalent (Ueno et al. 1997). Thus, examining the relationship between certain carcinogens 

and one-carbon metabolism has been a useful tool in determining the role of methyl groups 

in preventing hepatocarcinogenesis. Newbeme et al. (1990) demonstrated that supplemental 

methionine and choline reduced the incidence of liver cancers in mice given a carcinogenic 

dose of aflatoxin Bi, a mycotoxin commonly found in contaminated grain. Similar results 

were found in studies where rats were exposed to diethylnitrosamine (DENA), a cancer-

initiating agent (Pascale et al 1992; Porta et al 1985). In addition, Hoover et al. (1984) 

discovered that DENA-induced hepatocarcinogenesis was exacerbated in methyl-deficient 

rats. Taken together, these findings suggest supplemental methyl groups and/or folate could 

be useful in reducing the incidence of diet-related cancers. 
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Neurological Disorders 

SAM is utilized in the brain for the synthesis of neurotransmitters such as dopamine, 

serotonin, and norepinephrine. Recent evidence suggests that the role of SAM during the 

synthesis of neurotransmitters is important for the prevention of symptoms related to 

depression (Mishoulon and Fava 2002). In fact, evidence collected from trial studies 

suggests that the efficacy of oral SAM administration in treating depression is comparable to 

that of tricyclic antidepressants (Bressa 1994). Based in part on such findings, SAM is now 

marketed as an alternative to prescription anti-depressant medications and is available as an 

over-the-counter dietary supplement (Mischoulon and Fava 2002). 

Folate (Bottiglieri et al. 1992; Reynolds et al. 1970) and vitamin Bn deficiency 

(Botez et al. 1982) have also been linked to depression; however, the mechanistic basis of 

these findings is yet to be determined. Since vitamin Bn and folate are required for the de 

novo synthesis of SAM, it is possible that depression associated with a deficiency of these 

nutrients is due, at least in part, to a decline in the synthesis of neurotransmitters. 

In addition to depression, a number of other neurological disorders have been 

associated with folate deficiency including, polyneuropathy (Botez et al. 1978; Grant et al. 

1965), Alzheimer's disease, and Parkinson's disease (Mattson and Shea 2003). These 

disorders are a currently a topic of intense research. Evidence suggests that a disruption of 

homocysteine metabolism due to folate deficiency may contribute to the progression of such 

diseases by leading to decreased function and atrophy of neurotransmitter-producing neurons 

(Mattson 2003). 

Megaloblastic Anemia and the "Methyl Trap" Hypothesis 

The relationship between folate and vitamin Bn is critical during the MS-dependent 

remethylation of homocysteine by 5-methyl-THF, the only reaction known to require both 

folate and vitamin Bn (Hatch et al. 1961). Because the conversion of 5,10-methylene-THF 

to 5-methyl-THF by MTHFR is physiologically irreversible (Kutzbach and Stokstad 1971), it 

is therefore essential that an adequate supply of vitamin Bn is available to ensure that normal 

functioning of MS is maintained and to avoid what is known as the "methyl trap". During 

vitamin Bn deficiency, a "functional folate deficiency" occurs where the supply of folate 
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becomes trapped as 5-methyl-THF (Shane and Stokstad 1985), and tissue concentrations of 

other folate coenzymes, such as those used for the synthesis of DNA precursors, declines. A 

pathological condition that commonly results from a deficiency of either folate or vitamin 

B12 is megaloblastic anemia. Megaloblastic anemia is characterized by the appearance of 

large undifferentiated erythroblasts in circulation and a reduction in the number of circulating 

erythrocytes, which are believed to be due to decreased DNA synthesis and poor cell division 

(Hofïbrand et al. 1976). Depending on their respective nutrient deficiency, individuals 

suffering from megaloblastic anemia should be provided with supplemental folate or vitamin 

Bi2. It has been hypothesized that supplementary methyl groups may also help alleviate 

symptoms of megaloblastic anemia through their ability to spare folate coenzymes from 

being trapped as 5-methyl-THF through SAM-mediated inhibition of MTHFR (Shane and 

Stokstad 1985). 

Impaired Pancreatic Function 

Folate deficiency has been shown to inhibit pancreatic function (Balaghi and Wagner 

1992; 1995; Elseweidy and Singh 1984), which appears to be due to the inhibition of SAM-

dependent methylation of proteins that are responsible for the secretion of enzymes such as 

amylase (Capdevila et al. 1997). These findings obviously have serious implications for the 

disruption of normal digestion in folate-deficient individuals, alcoholics, and those using 

drugs that produce side effects that alter folate and methyl group metabolism. 

Drugs and Toxins 

As previously mentioned, pharmacological agents and environmental toxins can have 

a major impact on one-carbon metabolism,. Summarized below are some important findings 

regarding the effect of various toxicants on methyl group and/or folate-dependent, one-

carbon metabolism. 

Retinoids 

Vitamin A compounds, collectively referred to as retinoids, are utilized as therapeutic 

agents in the treatment of a number of conditions, including cystic acne and leukemia. 
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However, commonly prescribed in medications containing pharmacological doses of retinoid 

compounds have been shown to produce side effects that may be related to a disruption of 

one-carbon metabolism (Schulpis et al. 2001). Retinoid therapy is contraindicated with 

respect to pregnancy because of its association with an increased incidence of neural tube 

defects and other congenital malformations (Lammer et al. 1985), conditions associated with 

abnormal one-carbon metabolism. Studies that examined the ability of retinoids to alter the 

distribution of folate coenzymes in the one-carbon pool showed that the activity of hepatic 

MTHFR was inhibited in rats treated with pharmacological doses (1,000 IU/g diet) of retinol 

(vitamin A), which in turn resulted in decreased 5-methyl-THF synthesis (Fell and Steele 

1986). Furthermore, the oxidation rate of formate to COa was increased in these animals, 

indicating that retinol administration increased the catabolism of one-carbon units in the 

folate-dependent one-carbon pool. Retinol-treated rats also exhibited a reduction of hepatic 

SAM levels and the SAM/SAH ratio (Fell and Steele 1986). Similarly, Peng and Evenson 

(1982) found that retinol treatment increased the oxidation rate of the methyl group from 

methionine to CO2 in rats. 

An inhibition of SAM-dependent transmethylation reactions has been determined to 

be a consequence of retinoid-mediated depletion of SAM and a decreased SAM/SAH ratio 

(Fell and Steele 1987). In an extension of their earlier work (Fell and Steele 1986), Fell and 

Steele (1987) demonstrated that decreased hepatic levels of SAM due to retinol 

administration resulted in a reduction of the SAM-dependent conversion of phosphatidyl 

ethanolamine to phosphatidyl choline in rats, indicating that high intakes of retinoid 

compounds do in fact have the potential to impair SAM-dependent transmethylation 

reactions. Moreover, treatment with 13-cw-retinoic acid [isotretinoin (CRA)], a synthetic 

retinoid commonly used for treatment of cystic acne, reduced the hepatic concentration of 

SAM and the SAM/SAH ratio in rats (Schalinske and Steele 1991). Such findings linking 

retinoids to perturbations of one carbon metabolism clearly have importance for individuals 

receiving therapeutic retinoids for treatment of medical conditions. Interestingly, depression 

has been mentioned as a potential side effect of retinoid-containing acne medication (Enders 

and Enders 2003), which may be due, at least in part, to a decrease in the SAM-dependent 

synthesis of neurotransmitters. Other side effects of retinoid administration associated with 
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altered one-carbon metabolism include elevated plasma homocysteine levels (Schulpis et al. 

2001) and hepatic steatosis (Schalinske and Steele 1993), a condition that may be related to 

the decreased SAM-dependent synthesis of phosphatidyl choline, a phospholipid utilized for 

membrane synthesis of apolipoproteins and excretion of hepatic lipid via LDL. 

Retinoid compounds typically exert their actions at the transcriptional level via 

retinoid response elements; however, the mechanism through which retinoids alter the methyl 

group supply remains unclear. There is currently no evidence that indicates that retinoid 

response elements exist on the promoter regions of genes that encode key enzymes involved 

in methyl group metabolism. This suggests that the action of retinoids on the methyl group 

supply may occur, at least in part, at the translational and/or posttranslational level. 

Interestingly, increased catabolism of methionine caused by retinol treatment was prevented 

in adrenalectomized rats (Peng and Evenson 1982), indicating that the secretion of hormones, 

such as glucocorticoids from the adrenal glands, may play a mediating role between retinoids 

and the increased catabolism of methyl groups. Glucocorticoids and retinoids (Singh et al. 

1976) are both known to enhance the gene expression of gluconeogenic enzymes including 

phosphoenolpyruvate carboxykinase (PEPCK) (Singh et al. 1976; Pan et al. 1990; Shin and 

McGrane 1997), the rate-limiting enzyme of gluconeogenesis. Because methionine is 

catabolized to pyruvate during gluconeogenesis, it is possible that methionine catabolism is 

increased during retinoid treatment through the induction of a gluconeogenic state. 

Ethanol 

Folate deficiency is a common clinical sign of alcoholism (Halsted et al. 2002). A 

number of animal studies have demonstrated that in addition to inadequate dietary intake of 

folate, folate deficiency may be caused by increased excretion as well as elevated catabolism 

of folate coenzymes in alcoholics. Studies examining the effect of chronic ethanol exposure 

on folate metabolism demonstrated that ethanol 1) increased the catabolism of folate in the 

kidney (Eisenga et al. 1989), 2) increased urinary folate excretion in a dose- and time-

dependent manner (McMartin et al. 1986; 1986) through the inhibition of folate reabsorption 

by the renal tubules (McMartin et al. 1989), and 3) inhibited intestinal absorption of folate 

(Halsted et al. 1967; Romero et al. 1981). 
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In addition to the disruption of one-carbon metabolism through its effect on folate, 

exposure to ethanol also appears to enhance the catabolism of methionine (Trimble et al. 

1993). Trimble et al. (1993) reported that rats fed 42% of their calories as ethanol exhibited 

symptoms associated with an increased oxidation rate of methyl groups. When compared to 

control rats, ethanol-treated rats exhibited a 2.9-fold increase in the oxidation of the methyl 

group from methionine in the liver, a ~4-fold increased turnover of methyl groups from 

choline, and a 69% reduction of hepatic SAM levels. Likewise, Halsted et al. (2002) reported 

that ethanol-fed micropigs exhibited a decreased SAM/SAH ratio, an increased prevalence of 

DNA strand breaks, and elevated plasma homocysteine levels even when they were provided 

with supplemental folate. 

Clearly, the effect of chronic ethanol exposure on increased catabolism of methyl 

groups has the potential for producing pathological consequences; however, the mechanistic 

relationship between ethanol and methyl group metabolism is not well understood. Trimble 

et al. (1993) suggested that ethanol-mediated catabolism of methyl groups occurs in order to 

provide the carbon skeleton of methionine for its conversion in the transsulfuration pathway 

to glutathione, a natural antioxidant that appears to be depleted as a result of ethanol-induced 

oxidative damage to the liver. 

Anticonvulsants 

Long-term use of anticonvulsants, which has been associated folate deficiency 

(Dansky et al. 1987) and aberrant one-carbon metabolism (Alonso-Aperte et al. 1999) has 

also been associated with megaloblastic anemia (Hawkins and Meynell 1958) and congenital 

malformations during pregnancy (Dansky et al. 1987). Anticonvulsants, including the drugs 

phenytoin, phenobarbitone, phénobarbital, primidone, carbamazepine, and valproate, are 

thought to exert their actions on folate-dependent one-carbon metabolism by interfering with 

intestinal folate absorption (Meynell 1966; Hoffbrand and Necheles 1968) and/or inducing 

hepatic enzymes involved in the degradation of folate (Labadarios et al. 1978; Kishi et al. 

1997). Valproate in particular, has been shown to be a potent disrupter of methyl group 

metabolism, which appears to be due, at least in part, to its ability to alter the methyl group 

supply (Alonso-Aperte et al. 1999; Carl 1986). 
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Oral contraceptives 

The use of oral contraceptives has been associated with reduced serum folate levels 

(Pietarinen et al, 1977) and megaloblastic anemia (Baroné et al, 1979), conditions that are 

consistent with both increased plasma clearance of folate and elevated urinary folate 

excretion (Shojania et al. 1975). Stitterlin et al. (2003) recently reported that oral 

contraceptives also lower vitamin Bn levels, which may put individuals using these 

medications at even more of an increased risk for developing megaloblastic anemia and other 

conditions associated with impaired folate metabolism. 

Fumonisins 

Fumonisins are mycotoxins found primarily in contaminated com that have been 

shown to produce alterations of folate metabolism (Carratû et al, 2003). Fumonisins are 

thought to disrupt folate metabolism by blocking folate transport into the cell by inhibiting 

the synthesis of sphingolipids (Carratû et al, 2003), molecules required for cell membrane 

synthesis and cell signaling. Exposure to fumonisin Bi has been implicated in a number of 

pathologies commonly observed during folate deficiency, such as neural tube defects 

(Hibbard 1993) and liver cancer (Ueno et al. 1997). Therefore, it is not surprising that folic 

acid supplementation has been shown to be protective against these fumonisin-related 

pathologies (Sadler et al. 2002). 

Glycine JV-methyltransferase (GNMT) 

Glycine JV-methyltransferase (GNMT) is a cytosolic protein found primarily in the 

liver, pancreas, and kidney (Yeo and Wagner 1994) that functions to regulate the methyl 

group supply by disposing of excess methyl groups and controlling of the SAM/SAH ratio. 

GNMT is an especially abundant protein, constituting 1-3% of total cytosolic protein in the 

liver (Heady and Kerr 1975), suggesting that its role in regulating the methyl group supply is 

of major biological significance. The physiological importance of GNMT has been 

illustrated in clinical and metabolic studies (Mudd et al. 2001; Luka et al. 2002), where it 

was discovered that mild liver disease, persistent hypermethioninaemia, and elevated SAM 
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concentrations were present in siblings carrying a rare mutation that causes GNMT 

deficiency. 

The importance of GNMT in one-carbon metabolism is a relatively new research 

area. Hence, it is currently unknown how GNMT deficiency or perturbations of GNMT 

affect other SAM-dependent transmethylation reactions. It is also unclear how physiological 

factors can alter GNMT expression. It is understood that enzymatically active GNMT (132 

kDa), a tetrameric protein comprised of 4 identical subunits (Ogawa and Fujioka 1982), can 

be modulated at the postradiational level through the phosphorylation of each GNMT 

subunit by cAMP-dependent protein kinases, which serves to increase the enzymatic activity 

of the protein (Wagner et al. 1989). Additionally, GNMT's role as a folate-binding protein 

allows it to be allosterically inhibited by 5-methyl-THF, as discussed earlier. It is unclear, 

however, whether GNMT activity is modulated at the transcriptional or translational levels. 

GNMT activity is elevated during diabetes (Xue and Snoswell 1985), a condition that is 

associated with increased levels of glucagon and glucocorticoids, counterregulatory 

hormones that induce gluconeogenesis. As previously described, these hormones have been 

shown to increase the expression of other key enzymes in methyl group metabolism at the 

transcriptional level. Because the presence of GNMT is essentially limited to gluconeogenic 

tissues (Yeo and Wagner 1994), it is possible that counterregulatory hormones also play a 

role in regulating GNMT gene expression. 

In our laboratory, I have examined the role of GNMT in mediating the perturbation of 

methyl group metabolism by retinoid compounds and have illustrated for the first time that 

the modulation of GNMT is regulated, at least in part, at the transcriptional/translational 

levels by vitamin A compounds and glucocorticoids. I have also reported that retinoid-

mediated GNMT induction leads to impaired SAM-dependent transmethylation reactions 

(i.e. DNA methylation). Furthermore, I have shown that homocysteine metabolism is altered 

by retinoids and glucocorticoids. In the following chapters, original research articles that 

have been published in peer-reviewed journals discuss our observations in greater detail. 
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RETINOID COMPOUNDS ACTIVATE AND INDUCE HEPATIC 
GLYCINE iV-METHYLTRANSFERASE 

IN RATS12 

A paper published in the Journal of Nutrition3 

Matthew J. Rowling4 and Kevin L. Schalinske 4,5 

Abstract 

Glycine /V-methyltransferase (GNMT) functions to regulate S-adenosylmethionine 

(SAM) levels and the ratio of SAM/ S-adenosylhomocysteine (SAH). SAM is a universal 

methyl group donor and up-regulation of GNMT may lead to wastage of methyl groups 

required for transmethylation reactions. Previously, we demonstrated that dietary treatment 

of rats with 13-cw-retinoic acid (CRA) decreased the hepatic concentration of SAM and the 

SAM/SAH ratio. Here, we examined the ability of CRA, as well as all-Zra/iy-retinoic acid 

(ATRA), to regulate hepatic GNMT as a potential basis for our earlier observations. Rats 

were fed either a control (10% casein + 0.3% L-methionine) diet or a control diet 

supplemented with L-methionine (MS, 10 g/kg diet). Animals from each group were orally 

given either ATRA, CRA (both @ 30 pmol/kg body weight), or vehicle daily for 7 d. For 

control rats, administration of both CRA and ATRA elevated the hepatic GNMT activity 49 

and 34%, respectively, compared to the control group. Similar results were exhibited by rats 

fed the MS diet. Moreover, the retinoid-induced elevations in enzymatic activity were 

reflected in the abundance of GNMT protein. To our knowledge, this is the first report of a 

nutritional compound that induces GNMT activity at the transcriptional and/or translational 

level. 

Key Words: retinoic acid • S-adenosylmethionine • transmethylation 

• glycine N-methyltransferase • rats 
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Introduction 

Methyl groups supplied from dietary methionine or choline are required for the 

synthesis of S-adenosylmethionine (SAM6), a vital compound that is required as a substrate 

in SAM-dependent transmethylation reactions (1,2) (Figure 1). SAM-dependent 

transmethylation reactions include the posttranslational modification of nucleic acids and 

proteins (3), and the synthesis of important molecules such as neurotransmitters, 

phospholipids, and nucleic acids (1,2). Therefore, a lack of dietary methyl groups from the 

diet or the folate-dependent one-carbon pool can result in pathological conditions. A 

deficiency of dietary methyl groups leads to hepatocarcinogenesis (4,5), a condition that may 

be due to hypomethylated DNA (6). Additionally, folate deficiency down-regulates SAM-

dependent transmethylation reactions (7) and has been implicated in a number of related 

pathologies (8). 

Glycine AT-methyltransferase (GNMT) is a key cytosolic protein that controls the 

intracellular supply of available methyl groups for SAM-dependent transmethylation 

reactions (9). GNMT is known to dispose of excess SAM as sarcosine, a product that has no 

known metabolic function, thus controlling the SAM/S-adenosylhomocysteine (SAH) ratio, 

an index of transmethylation potential due to the ability of SAH to inhibit the majority of 

methyltransferases (9). The activity of GNMT is controlled by a number of regulatory 

mechanisms that are dependent on methyl group supply. For instance, when an abundant 

intracellular supply of SAM exists, SAM serves to allosterically inhibit 5,10-

methylenetetrahydrofolate reductase (MTHFR) (10,11), an enzyme that catalyzes the 

irreversible conversion of 5,10-methylene-tetrahydrofolate (5-MTHFR) to 5-methyl-

tetrahydrofolate (5-methyl-THF). Because GNMT serves as a folate-binding protein that is 

inhibited by 5-methyl-THF, decreased synthesis of 5-methyl-THF facilitates the disposal of 

excess SAM by GNMT. In contrast, a lack of SAM results in the increased synthesis of 5-

methyl-THF, which in turn inhibits GNMT (12) and thus allows SAM to serve as a substrate 

in important transmethylation reactions. Collectively, these regulatory mechanisms serve to 

optimize the methyl group supply; therefore, factors that can disturb the function of GNMT 

may have pathological consequences with respect to folate and methyl group metabolism. 
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Previous work in our laboratory has demonstrated that the administration of 13-cis-

retinoic acid (CRA), a retinoid compound commonly used therapeutically for the treatment 

of cystic acne, alters methyl group metabolism by reducing hepatic SAM concentrations and 

the SAM/SAH in rats treated with CRA (13). In an effort to understand the role of retinoids 

in the increased catabolism of methyl groups, we focused on the activation of GNMT as a 

potential mechanism. Additionally, we examined the ability all-/ra«s-retinoic acid (ATRA), 

the biologically active form of vitamin A commonly prescribed for treatment of certain types 

of leukemia, to perturb methyl group metabolism. 

Materials and Methods 

Chemicals and Reagents. 

Reagents were obtained from the following: S-adenosyl-L-[me?fty/-3H]methionine, 

New England Nuclear (Boston, MA); phenylmethylsulfonylflouride (PMSF), Calbiochem 

(La Jolla, CA); goat anti-rabbit IgG horseradish peroxidase (GAR-HRP), Southern 

Biotechnology (Birmingham, AL); ECL™ Western blotting detection reagents, Amersham 

Pharmacia (Piscataway, NJ); and S-adenosyl-L-methionine, Sigma Chemical Co. (St. Louis, 

MO). GNMT antibody was kindly provided by Conrad Wagner, Vanderbilt University. 

ATRA and CRA were provided courtesy of Hoffinann-LaRoche (Nutley, NJ). All other 

chemicals were of analytical grade. 

Animals and Diets. 

All animal experiments were approved by and conducted in accordance with Iowa 

State University Laboratory Animal Resources Guidelines. Male Sprague Dawley (Harlan 

Sprague Dawley, Indianapolis, IN) rats were housed in suspended wire-mesh cages in a room 

with a 12-h light: dark cycle and given free access to food and water. The composition of the 

control diet was the same as previously described (13). The methionine-supplemented (MS) 

diet contained additional L-methionine (10 g/kg diet) at the expense of glucose monohydrate. 

Following an 11-d acclimation period during which rats were adapted to both the 

control diet and oral administration of corn oil, they were divided into six treatment groups 

consisting of five rats per group. Rats were fed one of the two diets (control or MS) and 
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were orally administered either vehicle (corn oil, 1 pL/g body weight), vehicle containing 

CRA, or vehicle containing ATRA daily. Both retinoids were administered at a level of 30 

jumol/kg body weight. Following the 7-d treatment period, rats were anesthetized and liver 

samples were rapidly removed for analysis. 

Measurement of GNMT activity. 

The enzymatic activity of GNMT was assayed as described by Cook and Wagner (14) 

with minor modifications. Portions of liver were homogenized in 3 volumes of ice-cold 

phosphate buffered (10 mmol/L, pH 7.0) sucrose (0.25 mol/L) containing 1 mmol/L EDTA, 

1 mmol/L sodium azide, and 0.1 mmol/L PMSF. Following centrifugation at 20,000 x g for 

30 min, the resulting supernatant was removed and 2-mercaptoethanol was added to a final 

concentration of 10 mmol/L. The assay mixture consisted of 0.1 mol/L Tris buffer (pH 9.0), 

5 mmol/L dithiothreitol, 1 mmol/L glycine, and 1 mmol/L S-adenosyl-L- [methyl-

3H]methionine (4.77 x 106 Bq/mmol). The reaction was initiated upon addition of 250 |ig of 

sample protein. The assay was linear with respect to time and protein concentration. For the 

determination of total soluble protein in the tissue extract, a commercial kit (Coomassie Plus, 

Pierce, Rockford, IL) based on the method of Bradford (15) was used with bovine serum 

albumin (BSA) as a standard. 

Measurement of GNMT Protein. 

For the determination of the abundance of GNMT protein, immunoblotting with 

chemiluminescence detection was employed. SDS-polyacrylamide gel electrophoresis was 

performed using a 10-20% gradient gel and 75 pg sample protein per lane. Following 

separation, the proteins were electrophoretically transferred to nitrocellulose and the 

membrane was incubated at room temperature in a blocking solution containing nonfat dry 

milk (5 g/100 mL) in TTBS buffer consisting of 20 mmol/L Tris, (pH 7.5) and 500 \i\FL 

Tween 20. Affinity-purified polyclonal GNMT antibody in BSA (1 g/100 mL) - TTBS 

(1:1000) was added and the blot was incubated at 4°C overnight. The blot was incubated for 

1 h at room temperature with GAR-HRP in TTBS (1:5000), followed by a 1-min incubation 
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in Western blot chemiluminescent detection reagents prior to multiple exposures to 

autoradiography film. Densitometric analysis was performed using the NIH Image software. 

Statistical Analysis. 

The means of each treatment group were subjected to a two-way ANOVA. When the 

ANOVA proved to be significant (P < 0.05), the means were compared using the Fisher LSD 

procedure (16). 

Results 

Retinoid treatment did not alter rat growth rates. 

Body weights were measured during both the acclimation phase (data not shown) and 

retinoid-treatment period of the study (Fig. 2). All rat groups exhibited similar growth 

patterns regardless of treatment and no significant differences were detected in either the 

initial (81 ± 2 g) or final (181 ± 3 g) body weights. As indicated in Fig. 2, no significant 

differences were observed in the cumulative weight gain across the treatment groups, 

indicating that neither the MS diet nor the retinoids were overtly toxic to the animals. We 

have shown previously that administration of CRA does have the ability to induce hepatic 

steatosis in rats fed a similar diet (13). This was also found to be the case in the present 

study for both CRA and ATRA (data not shown). 

Retinoids increased the enzymatic activity of hepatic GNMT. 

As shown in Fig. 3, administration of CRA and ATRA consistently elevated the 

enzymatic activity of hepatic GNMT. For rats receiving the control diet, CRA administration 

increased GNMT activity 49%. ATRA also increased enzyme activity (34%), however, this 

change was not statistically significant (P=0.081). In contrast, both CRA and ATRA 

significantly induced GNMT activity 41 and 45%, respectively, in rats receiving the MS diet. 

For the MS diet, the addition of L-methionine alone (10 g/kg diet) was without significant 

effect. Previous studies have demonstrated that induction of GNMT activity by dietary 

methionine requires closer to 20 g methionine/kg diet (17). 
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Both CRA and ATRA induce GNMT protein abundance. 

Using immunoblotting with a GNMT antibody, we determined whether the retinoid-

induced increase in GNMT activity was due to changes in the production of the enzyme (Fig. 

4). The bar graph reflects the mean result from all of the experimental animals, whereas the 

immunoblot shown above is a representative example with the relative fold induction shown 

for each lane. Both CRA and ATRA markedly induced GNMT protein abundance in control 

rats and animals receiving the MS diet. The induction of GNMT protein by retinoids across 

treatment groups ranged from approximately 8- to 16-fold. Similar to the enzyme activity 

data, the MS diet alone did not significantly alter GNMT protein levels based on mean 

values. However, it does appear to have some effect as can be seen in the representative blot 

(3.1-fold induction). There was no difference in actin protein abundance across the treatment 

groups. Interestingly, in both the bar graph and representative immunoblot, the effect of the 

MS diet and retinoids on GNMT protein induction appears to be additive. As suggested by 

others (17), we have directly confirmed that the addition of graded levels of L-methionine to 

the diet and subsequent induction of GNMT enzyme activity is reflected in an increase in 

GNMT protein abundance (Rowling and Schalinske, unpublished data). 

Discussion 

GNMT serves a crucial role in methyl group- and folate-dependent one-carbon 

metabolism by regulating the methyl group supply and the SAM/SAH ratio (9). Hence, 

factors that can disrupt the function of this enzyme may produce deleterious physiological 

consequences. We have demonstrated that the vitamin A derivatives have the ability to 

activate GNMT, which was reflected by the abundance of the protein. Thus, we have 

demonstrated for the first time, at least to our knowledge, that GNMT can be modulated at 

the transcriptional/translational level. Furthermore, we have clearly shown that ATRA, the 

active form of vitamin A, has a similar ability to CRA in altering methyl group metabolism. 

Our observations with CRA and ATRA have clear implications for those individuals 

receiving therapeutic retinoids for medical conditions such as skin disorders and leukemia. 

Although we administered these compounds to our animals in pharmacological doses (30 

pmol/kg) that are far above the clinical dosage normally prescribed to humans receiving 

retinoid therapy (2-6 pmol/kg), we have discovered that doses as low as 1 pmol/kg have a 
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similar ability to activate and induce GNMT protein in rats (Rowling and Schalinske, 

unpublished observations). Additionally, rats are known to be less sensitive to CRA than 

humans due to their increased ability to eliminate the drug (18), indicating that doses used in 

our studies may be more effective in perturbing methyl group metabolism in humans. Thus, 

humans receiving retinoids for therapeutic use may be at an increased risk for developing 

complications related to methyl group metabolism even when given low doses of retinoid 

compounds. 

A number of factors have been shown to increase the activity of GNMT at the 

posttranslational level, including folate deficiency (7), ethanol administration (19), and 

phosphorylation of the protein by cyclic adenosine 5'-monophosphate (cAMP)-dependent 

kinases (20). The present study raises a number of questions concerning the regulation of 

GNMT protein synthesis by retinoids. Because there is no known retinoid response element 

in the promoter region of the GNMT gene, it is possible that the apparent induction of 

GNMT in our studies was a result of either increased translation or stabilization of the 

protein. It is known that in addition to its enzymatic function as a tetramer, the dimeric form 

of GNMT serves as a polycyclic aromatic hydrocarbon binding protein (21). Hence, the 

possibility exists that the activation and induction of GNMT could be achieved by separate 

mechanisms. 

Our laboratory is currently investigating the possible role of gluconeogenesis in 

mediating the induction of GNMT by retinoids because GNMT is found primarily in 

gluconeogenic tissues, which include the liver, kidney, and pancreas (22). Retinoids have 

been shown to exacerbate symptoms of diabetes (23), a condition that is associated with 

elevations in circulating counter regulatory hormones (i.e. glucagon and glucocorticoids) and 

increased gluconeogenesis. Moreover, Xue and Snoswell (24) reported that GNMT activity 

was elevated 65-fold in alloxan-diabetic sheep. Interestingly, glucagon and glucocorticoids 

also play an integral role in the induction of phosphoenolpyruvate carboxykinase (PEPCK), 

the rate-limiting enzyme of gluconeogenesis, which also possesses a retinoid response 

element (25,26). Likewise, GNMT activity is up regulated as a result of phosphorylation by 

cAMP-dependent kinases (20), which have also been shown to increase PEPCK gene 
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expression (25). Therefore, it is possible that a number of signals may play a mediating role 

in retinoid-induced GNMT expression. 

Undoubtedly, a number of potential mechanisms exist that may be responsible for the 

induction of GNMT by retinoids, and the action of retinoid compounds on methyl group 

metabolism may be mediated by other factors. We are currently exploring these research 

areas and the effect of GNMT up-regulation on other aspects of folate and methyl group 

metabolism. These research topics will be important for developing future dietary 

recommendations and the evaluation of other retinoid compounds for clinical use. 

Acknowledgements 

The authors would like to express their sincere gratitude to: Conrad Wagner, 

Vanderbilt University, for the generous supply of GNMT antibodies; and Robert D. Steele, 

Pennsylvania State University, in whose laboratory this work began. 

Literature Cited 

1. Cantoni, G. L. (1982) S-adenosyl amino acids thirty years later: 1951-1981. In: 
The Biochemistry of S-adenosylmethionine and Related Compounds (Usdin, E., Borchardt, R. 
T., and Creveling, C. R., eds.) pp. 3-10. Macmillan Press, London, England. 

2. Cantoni, G. L. and Chiang, P. K. (1980) The role of S-adenosylhomocysteine 
hydrolase in the control of biological methylation reactions. In: Natural Sulfur Compounds 
(Cavallini, D., Gaull, G. E., and Zappia, V., eds.) pp. 67-80. Plenum Press, New York, NY. 

3. Benjamins, J. A., Morell, P., Hartman, B. K., and Agrawal, H. C. (1984) Central 
nervous system myelin. In: Handbook of Neurochemistry, 2nd edition (Lajtha, A., ed.) 
Plenum Press, New York, pp. 361-415. 

4. Ghoshal, A. K. and Farber, E. (1984) The induction of liver cancer by dietary 
deficiency of choline and methionine without added carcinogens. Carcinogenesis. 5(10): 
1367-1370. 

5. Salmon, W. D. and Copeland, D. H. (1954) Liver carcinoma and related lesions in 
chronic choline deficiency. Ann. NY. Acad. Sci. 57: 664-677. 

6. Balaghi, M. and Wagner, C. (1993) DNA methylation in folate deficiency: use of 
CpG methylase. Biochem. Biophys. Res. Comm. 193(3): 1184-1190. 



www.manaraa.com

46 

7. Balaghi, M., Home, D. W., and Wagner, C. (1993) Hepatic one-carbon 
metabolism ion early folate deficiency in rats. Biochem. J. 291: 145-149. 

8. Pogribny, I. P., Basnakian, A. G., Miller, B. J., Lopatina, N. G., Poirier, L. A., and 
James, S. J. (1995) Breaks in genomic DNA and within the p53 gene are associated with 
hypomethylation in livers of folate/methyl-deficient rats. Cancer Res. 55: 1894-1901. 

9. Kerr, S. J. (1972) Competing methyltransferase systems. J. Biol. Chem. 247: 
4248-4252. 

10. Kutzbach, C. and Stokstad, E. L. R. (1967) Feedback inhibition of methylene-
tetrahydrofolate reductase in rat liver by S-adenosylmethionine. Biochim. Biophys. Acta. 139: 
217-220. 

11. Kutzbach, C. and Stokstad, E. L. R. (1971) Mammalian 
methylenetetrahydrofolate reductase. Partial purification, properties, and inhibition by S-
adenosylmethionine. Biochim. Biophys. Acta. 250: 459-477. 

12. Wagner, C., Briggs, W. T., and Cook, R. B. (1985) Inhibition of glycine N-
methyltransferase activity by folate derivatives: Implications for regulation of methyl group 
metabolism. Biochem. Biophys. Res. Commun. 127(3) 746-752. 

13. Schalinske, K. L. and Steele, R. D. (1991) 13-czs-retinoic alters methionine 
metabolism in rats. J. Nutr. 121:1714-1719. 

14. Cook, R. J. and Wagner, C. (1984) Glycine ^/-methyltransferase is a folate 
binding protein of rat liver cytosol. Proc. Natl. Acad. Sci. U.S.A. 81: 3631-3634. 

15. Bradford, M. M. (1976) A rapid and sensitive method for the quantification of 
microgram quantities of protein utilizing the principle of dye-binding. Anal. Biochem. 72: 
248-254. 

16. Snedecor, G. W. and Cochran, W. G. (1980) Statistical Methods, 7th ed. Iowa 
State University Press, Ames, IA. 

17. Ogawa, H. and Fujioka, M. (1982) Induction of rat liver glycine 
methyltransferase by high methionine diet. Biochem. Biophys. Res. Commun. 108: 227-232. 

18. Nau, H. (2001) Teratogenecity of isotretinoin revisited: species variation and the 
role of all-fraw-retinoic acid. J. Am. Acad. Dermatol. 45(5): S189-187. 

19. Trimble, K. C., Molloy, A. M., Scott, J. M., and Weir, D. G. (1993) The effect of 
ethanol on one-carbon metabolism: increased methionine catabolism and lipotrope methyl-
group wastage. Hepatology: 18(4): 984-989. 



www.manaraa.com

47 

20. Wagner, C., Decha-Unphai, W., and Corbin, J. (1989) Phosphorylation 
modulates the activity of glycine ^-methyltransferase, a folate binding protein. J. Biol. 
Chem. 264(16): 9638-9642. 

21.Raha, A., Wagner, C., MacDonald, R. G., and Bresnick, E. (1994) Rat liver 
cytosolic 4 S polycyclic aromatic hydrocarbon-binding protein is glycine N-
methyltransferase. J. Biol Chem. 269: 5750-5756. 

22. Yeo, E-J. and Wagner, C. (1994) Tissue distribution of glycine N-
methyltransferase, a major folate-binding protein of liver. Proc. Natl. Acad. Sci. USA. 91: 
210-214. 

23. Driscoll, H. K., Chertow, B. S., Jelic, T. M., Baltaro, R. J., Chandor, S. B., 
Walker, E. M., Dadgari, J. M., and Pofahl, A. B. (1996) Vitamin A status affects the 
development of diabetes and insulitis in BB rats. Metabolism. 45: 248-253. 

24. Xue, G-P. and Snoswell, A. M. (1985) Disturbance of methyl group metabolism 
in alloxan-diabetic sheep. Biochem. Int. 10(6): 897-905. 

25. Pan, C-J., Hoeppner, W., and Yang Chou, J. (1990) Induction of 
phosphoenolypyruvate carboxykinase gene expression by retinoic acid in an adult rat 
hepatocye line. Biochemistry. 29(49): 10883-10888. 

26. Shin, D-J., McGrane, M. M. (1997) Vitamin A regulates genes involved in 
hepatic gluconeogenesis in mice: phosphoenolpyruvate carboxykinase, fructose-1,6-
bisphosphatase and 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase. J. Nutr. 127: 
1274-1278. 



www.manaraa.com

48 

FIGURE LEGENDS 

FIGURE 1 Interrelationship between methyl group and folate metabolism. Hepatic S-

adenosylmethionine (SAM), a methyl group donor in a number of transmethylation reactions, 

is produced from methionine, via the diet and from the remethylation of homocysteine in a 

B ̂ -dependent reaction that utilizes the folate-dependent one-carbon pool as a methyl group 

source (i.e., 5-methyl-tetrahydrofolate, 5-methyl-THF). S-adenosylhomocysteine (SAH), the 

product of SAM-dependent transmethylation reactions, is a potent inhibitor of most 

methyltransferases and thus the ratio of SAM/SAH is an index of transmethylation potential. 

SAM is also an allosteric inhibitor of 5,10-methylene-THF reductase (MTHFR), the enzyme 

that catalyzes the irreversible reduction of 5,10-methylene-THF to 5-methyl-THF. In turn, 5-

methyl-THF is an inhibitor of glycine N-methyltransferase (GNMT), a key protein involved 

in the regulation of transmethylation by controlling the ratio of SAM/SAH. Both of these 

inhibitory relationships are indicated by the dashed arrows. 

FIGURE 2 Administration of 13-cis -retinoic acid (CRA) and all-fra/w-retinoic acid 

(ATRA) to rats for 7 d did not alter their growth rates. Data are means (n=5) ± SEM and 

were compared across treatment groups (f=0.05) at each time point. Following an 

adaptation period, an equal number of rats in both the control and L-methionine-

supplemented (MS, 10 g/kg diet) groups were treated with either vehicle (corn oil), CRA (30 

pmol/kg body weight), or ATRA (30 pmol/kg body weight) daily. For all rats (n=30), mean 

(± SEM) body weights at treatment d=0 and d=7 were 146 ± 3 g and 181 ± 3 g, respectively. 

N.S. indicates not statistically significant. 

FIGURE 3 Administration of 13-cw-retinoic acid (CRA) and all-frow-retinoic acid 

(ATRA) to rats increased the hepatic activity of glycine N-methyltransferase (GNMT) in 

both control and L-methionine-supplemented (MS, 10 g/kg diet) rats. Data are means (n=5) 

± SEM. Bars denoted by different letters are significantly different (P<0.05). All assays 

were performed in triplicate. 
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FIGURE 4 Administration of 13-cw-retinoic acid (CRA) and all-frazro-retinoic acid 

(ATRA) to rats increased the hepatic abundance of glycine N-methyltransferase (GNMT) in 

both control and L-methionine-supplemented (MS, 10 g/kg diet) rats. Data are means (n=5) 

± SEM. Bars denoted by different letters are significantly different (P<0.05). Above the bar 

graph is a representative immunoblot with the relative fold-induction provided below each 

lane. 
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Abstract 

Regulation of S-adenosylmethionine (SAM) and the SAM/S-adenosylhomocysteine 

(SAH) ratio by the key cytosolic enzyme glycine iV-methyltransferase (GNMT) is essential in 

optimizing methyl group supply and subsequent functioning of methyltransferase enzymes. 

Therefore, inappropriate activation of GNMT may lead to the loss of methyl groups vital for 

many SAM-dependent transmethylation reactions. Previously, we demonstrated that the 

retinoid derivatives \3-cis- (CRA) and all-frans-retinoic acid (ATRA) mediated both the 

activity of GNMT and its abundance. The present study was conducted to determine if 

vitamin A had a similar ability to up-regulate GNMT as well as to assess the biological 

significance of GNMT modulation by examining both the transmethylation and 

transsulfuration pathways following retinoid treatment. Rats were fed a control (10% casein 

+ 0.3% L-methionine) diet and orally given retinyl palmitate (RP), CRA, ATRA, or vehicle 

daily for 10 d. RP, CRA, and ATRA elevated hepatic GNMT activity 32, 74, and 124% 

respectively, compared to the control group. Moreover, the retinoid-mediated changes in 

GNMT activity were reflected in GNMT abundance (38, 89, and 107% increase for RP-, 

CRA-, and ATRA-treated rats, respectively). In addition, hepatic DNA, a substrate for 

SAM-dependent transmethylation, was hypomethylated (-100%) following ATRA treatment 

compared to the control group. In contrast, the transsulfuration product glutathione was 

unaffected by retinoid treatment. These results provide evidence that (i) vitamin A, like its 

retinoic acid derivatives, can induce enzymatically active GNMT; and (ii) inappropriate 

induction of GNMT can lead to a biologically significant loss of methyl groups and the 

subsequent impairment of essential transmethylation processes. 
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Introduction 

S-adenosylmethionine (SAM)5 is a product of methionine metabolism that serves as a 

donor of methyl groups for transmethylation reactions that are required for the maintenance 

of optimum health and the prevention of disease (1,2). SAM-dependent transmethylation 

reactions include the synthesis of phospholipids, neurotransmitters, and the posttranslational 

modification of nucleic acids and proteins (1,2). Hence, an adequate supply of methyl 

groups provided by the diet in the form of choline and methionine or from the folate-

dependent one-carbon pool must be maintained to ensure these reactions function optimally. 

If an adequate methyl group supply is not maintained, pathological conditions such as 

hepatocarcinogenesis (3,4) and hepatic steatosis (5) may occur. 

Among the end products of SAM-dependent transmethylation reactions is S-

adenosylhomocysteine (SAH), a molecule that is a potent inhibitor of most methyltransferase 

reactions (6). Therefore, control of the SAM/SAH ratio, which is considered an index of 

transmethylation potential (1,2), is a critical aspect of one-carbon metabolism. In order to 

optimize the SAM/SAH ratio, the cytosolic enzyme glycine //-methyltransferase (GNMT) 

functions in conjunction with folate to regulate the methyl group supply. The enzymatic 

activity of GNMT serves to dispose of excess methyl groups through the methylation of 

glycine and subsequent formation sarcosine, a molecule with no known metabolic function 

(Fig. 1). When there is an excess supply of SAM (i.e. methyl groups), SAM allosterically 

inhibits the folate-dependent enzyme 5,10-methylenetetrahydrofolate reductase (MTHFR) 

(7,8). This process serves to inhibit the formation of 5-methyltetrahydrofolate (5-methyl-

THF), which in turn, slows the flow of methyl groups from the one-carbon pool into the 

methyl group metabolism pathway and diverts one-carbon units to where they are needed. 

Decreased 5-methyl-THF synthesis also results in elevated GNMT activity and the increased 

catabolism of SAM because GNMT is allosterically inhibited by 5-methyl-THF (9,10). In 

contrast, a compromised supply of SAM releases the inhibition of MTHFR, resulting in 

increased 5-methyl-THF formation and GNMT inhibition. This helps to ensure that methyl 

groups are available for other transmethylation reactions. Therefore, inappropriate activation 

of GNMT during conditions when the methyl group supply is compromised may result in a 
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down-regulation of important transmethylation reactions and subsequent pathological 

conditions. 

Besides transmethylation, activation of GNMT may have important consequences on 

the metabolism of homocysteine, a subsequent product of SAH hydrolysis. After SAH is 

converted to homocysteine, a metabolic branch point exists where homocysteine is either 

remethylated to generate methionine or irreversibly committed to the transsulfuration 

pathway where it can serve as a precursor to biologically significant compounds such as 

cysteine and glutathione (Fig. 1). Currently, no evidence exists that associates activation of 

GNMT and alterations in components of the transsulfuration pathway such as glutathione or 

homocysteine. 

Previously, we showed that methionine catabolism appears to be enhanced in rats 

given the retinoid compound 13-czj,-retinoic acid (CRA) (11). Recently, we reported that a 

potential mechanism for the retinoid-induced increase in methionine/S AM catabolism was 

the activation and induction of hepatic GNMT mediated by both CRA and all-fra/w-retinoic 

acid (ATRA) (12). Based on these findings two obvious questions emerged: 1) does vitamin 

A modulate hepatic GNMT? and 2) does the induction of enzymatically active GNMT by 

retinoids deplete the methyl group supply to the point where hepatic transmethylation and/or 

transsulfuration pathways are compromised? In the present study, we present data that 

indicates that vitamin A does in fact mediate an increase in GNMT, which in turn leads to an 

inability to maintain SAM-dependent methylation of DNA. Furthermore, the increase in 

GNMT abundance by retinoid administration produces GNMT protein that exists primarily 

in its enzymatically active tetrameric state. 

Materials and Methods 

Chemicals and reagents. 

Reagents were obtained from the following: S-adenosyl-L-[/Mef/ÎY/-3H]methionine for 

GNMT activity, New England Nuclear (Boston, MA);, S-adenosyl-L-[mefAy/-3H]methionine 

for DNA methylation assay and ECL Western blotting detection reagents, Amersham 

Pharmacia (Piscataway, NJ); phenylmethylsulfonylflouride and dimethylsulfoxide (DMSO), 
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Calbiochem (La Jolla, CA); disuccinimidyl suberate (DSS), Pierce Chemical (Rockford, IL); 

goat anti-rabbit immunoglobulin G horseradish peroxidase, Southern Biotechnology 

(Birmingham, AL); S-adenosyl-L-methionine and glutathione reductase, Sigma Chemical (St. 

Louis, MO); and Sss I methylase, New England Biolabs (Beverly, MA). GNMT antibodies 

were kindly provided by Conrad Wagner, Vanderbilt University. Retinyl palmitate (RP), 13-

cza-retinoic acid (CRA), and all-/ra>M-retinoic acid (ATRA) were provided courtesy of 

Hoffmann-LaRoche (Nutley, NJ). All other chemicals were of analytical grade. 

Animals and diets. 

All animal experiments were approved and conducted in accordance with Iowa State 

University Laboratory Animal Resources Guidelines. Male Sprague-Dawley (Harlan 

Sprague-Dawley, Indianapolis, IN) rats were housed in plastic cages with a 12-h light:dark 

cycle and given free access to food and water. The control diet was the same as described 

previously (11). After a 7-d acclimation period during which rats were adapted to both the 

diet and oral administration of corn oil, rats were divided into four treatment groups (five rats 

per group) and were orally given either vehicle (com oil, 1 |iL/g body weight), RP, CRA, or 

ATRA on a daily basis for 10 days. Retinoids were prepared in com oil and administered at 

a level of 30 pmol/kg body weight. Although pharmacological in magnitude, this dosage 

was similar to levels used previously (11,12), thus maintaining the continuity of this research 

and allowing comparisons to be drawn. However, current research using more physiological 

levels of retinoids (~1 |xmol/kg body weight) is of significant importance as well. Following 

the 10-d treatment period, rats were anesthetized and portions of liver were removed for 

analysis of GNMT activity, GNMT protein abundance, DNA methylation, and total 

glutathione concentration. 

Measurement of GNMT activity and protein abundance. 

The enzymatic activity of GNMT was measured using the method of Cook and 

Wagner (13) with minor modifications. Portions of liver were homogenized in three volumes 

of ice-cold phosphate buffered (10 mmol/L, pH 7.0) sucrose (0.25 mol/L) containing 

1 mmol/L EDTA, 1 mmol/L sodium azide, and 0.1 mmol/L phenylmethylsulfonylflouride. 
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After centrifugation at 20,000 x g for 30 min, the resulting supernatant was removed and 2-

mercaptoethanol was added to a final concentration of 10 mmol/L. The assay reaction 

mixture (100 pi) contained 0.2 mol/L Tris buffer (pH 9.0), 5 mmol/L dithiothreitol, 2 

mmol/L glycine, and 0.2 mmol/L S-adenosyl-Z,-[meffry/-3H]methionine (47.7 kBq/pmol). The 

reaction was initiated upon the addition of 250 jxg of sample protein and was performed in 

triplicate. GNMT protein abundance was measured using immunoblotting followed by 

chemiluminescence detection as described previously (12). Samples (75 p,g total protein) 

were subjected to sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) 

using a 10-20% gradient gel and were electrophoretically transferred to a nitrocellulose 

membrane. For the chemiluminescent detection of GNMT, the membrane was incubated 

with affinity-purified polyclonal GNMT antibody followed by goat anti-rabbit horseradish 

peroxidase. Densitometric analysis was performed using the National Institutes of Health 

Image software. For the determination of total soluble protein concentration in liver extracts, 

a commercial kit (Coomassie Plus, Pierce, Rockford, IL) based on the method of Bradford 

(14) was used with bovine serum albumin as the standard. 

Chemical cross-linking of endogenous GNMT. 

For determining the oligomeric state of GNMT following retinoid treatment, liver 

extracts were incubated with 1.5 mmol/L DSS in DMSO for 30 min at room temperature 

followed by the addition of 6 |iL ethanolamine to terminate the cross-linking reaction (15). 

Samples were subjected to SDS-PAGE followed by immunoblotting and chemiluminescence 

detection as described above. 

DNA methylation. 

To determine whether retinoids induced hypomethylation of hepatic DNA (i.e., 

altered transmethylation), an assay to measure the in vitro incorporation of methyl groups 

into DNA was used (16) with minor modifications. DNA was purified from liver samples 

based on the method of Miller et al. (17) using a commercial kit (Promega, Madison, WI). 

All isolated DNA samples exhibited an A260/280 ratio >1.8 and consisted of DNA > 20 kb as 

determined by agarose gel electrophoresis and ethidium bromide staining. The assay mixture 



www.manaraa.com

60 

consisted of 1.0 pg DNA, 2.7 |xmol/L S-adenosyl-L-[mer/zyZ3H]methionine (555 GBq/mmol) 

and reaction buffer [10 mmol/L Tris buffer (pH 7.9), 50 mmol/L NaCl, 10 mmol/L EDTA, 1 

mmol/L dithiothreitol] in a total volume of 50 pL. The reaction was initiated upon the 

addition of Sss I methylase (4 units) and was carried out at 30°C for 1 h. After the reaction 

was stopped by heating the samples at 65°C for 20 min, the mixture was applied to Whatman 

DE-81 ion exchange filters fixed on a suction apparatus and washed successively with 20 mL 

500 mmol/L sodium phosphate buffer (pH 7.0), 2 mL 70% ethanol, and 2 mL absolute 

ethanol. The filters were allowed to air dry and subjected to liquid scintillation counting. 

Total liver glutathione. 

For the measurement of total hepatic glutathione concentrations, portions of liver 

were homogenized in 2 volumes of 0.4 mol/L perchloric acid followed by centrifugation at 

10,000 x g for 10 min at 4°C. The resulting supernatant was diluted 100-fold with 125 

mmol/L sodium phosphate buffer (pH 7.5) containing 6.3 mmol/L EDTA and 30 pL was 

used to spectrophometrically measure total glutathione concentrations as described by Tietze 

(18). 

Statistical analysis. 

The means of each treatment group were subjected to a one-way ANOVA (P < 0.05) 

and compared using Fisher's least significant difference procedure (19). For the GNMT 

activity data in Fig. 2 A, the mean of each retinoid-treated group was also individually 

compared to the control group using Dunnet's Test. This second post-hoc test determines 

significant differences between a given treatment group and the control group only, and does 

not compare mean values across treatment groups. For Fig. 3, an association between 

GNMT activity and protein abundance across treatment groups was determined using the 

Pearson Correlation procedure. All statistical analysis was performed using SigmaStat 

(SPSS Inc., Chicago, IL). 
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Results 

Retinoids did not alter the growth rate or relative liver size of rats. 

As we have previously reported (12), all rat groups exhibited similar growth patterns 

(data not shown) and no significant differences in initial (65 ± 1 g) nor final (157 + 2 g) body 

weights were observed across the treatment groups. Likewise, relative liver size was not 

affected by retinoid administration (data not shown). 

Retinoids activate hepatic GNMT. 

The ability of RP, CRA, and ATRA to activate GNMT is shown in Fig. 2 A. Both 

CRA and ATRA significantly elevated the activity of GNMT 74% and 124%, respectively, 

compared to controls. Likewise, RP administration increased GNMT activity (32%), 

however this alteration was not statistically significant (P=0.052). The increase in GNMT 

activity due to RP administration was significant (P=0.020) when the retinoid treatment 

groups were compared to the control group alone (denoted by the asterisk). 

Retinoid compounds, including vitamin A, induce GNMT abundance. 

Fig. 2B illustrates the ability of RP, CRA, and ATRA to significantly induce hepatic 

production of GNMT protein. The bar graph reflects the mean from all experimental 

animals, whereas the immunoblot above is a representative example with the relative fold 

induction located under each lane. All three retinoids, including RP, significantly induced 

GNMT protein abundance. The mean induction of GNMT protein due to retinoid treatment 

ranged from 38 to 107%. Interestingly, it appears that all of the retinoid-induced synthesis of 

GNMT resulted in enzymatically active protein. As shown in Fig. 3, GNMT protein 

abundance was positively correlated with the increase in GNMT activity (r=0.772, P < 

0.001). The ability of retinoids to induce hepatic GNMT in its enzymatically active 

tetrameric state is further illustrated in Fig. 4. Using DSS to cross-link subunits, we 

determined the oligomeric state of GNMT following retinoid treatment. Similar to Fig. 2B, 

all three retinoids induced GNMT monomer (32kD) synthesis {lanes 1-4). The same samples 

were also analyzed following incubation with the cross-linking reagent DSS (lanes 5-8). 
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DSS-treatment of both control and retinoid samples demonstrated that (i) little, if any, of the 

newly synthesized GNMT protein remains as a monomer; and (ii) the majority of the GNMT 

protein was in its tetrameric (128 kD) enzymatically active form. No GNMT was detected in 

the dimeric (64 kD) form (data not shown). 

Retinoid treatment induced hepatic DNA hypomethylation, but failed to alter hepatic 

glutathione levels. 

The effects of RP, CRA, and ATRA on hepatic DNA methylation status are shown in 

Fig. 5. Compared to control rats, hepatic DNA isolated from ATRA-treated rats exhibited a 

greater (~100%) ability to incorporate methyl groups from SAM into hepatic DNA, 

indicating a significant reduction in endogenous methylation status was present following 

retinoid treatment. The mean level of DNA methylation exhibited by RP- and CRA-treated 

rats was not significantly different from control values. To determine whether the disruption 

in the transmethylation pathway due to retinoid administration had a potential effect on 

specific components of the transsulfuration pathway, the hepatic concentration of total 

glutathione was assessed. No significant differences in glutathione levels or the total 

glutathione content of the liver were observed across the treatment groups (data not shown). 

Discussion 

The regulation of the SAM/SAH ratio by GNMT is critical for maintaining an 

optimum supply of methyl groups for transmethylation reactions. Therefore, disruption of 

GNMT function may lead to the unwarranted loss of methyl groups and compromised 

transmethylation reactions. GNMT function has been shown to be altered during diabetic 

conditions (20), ethanol administration (21), and folate deficiency (22); however, the 

physiological consequences of aberrant GNMT function were not explored in these studies. 

Recently, we demonstrated that retinoid compounds have a similar ability to increase GNMT 

activity, an occurrence that was reflected in abundance of the protein (12). In the present 

study, we extending these findings by illustrating that like CRA and ATRA, vitamin A, 

though to a lesser degree, has a similar ability to activate and induce the active tetrameric 

form of GNMT, as was illustrated in our cross-linking studies. Because vitamin A needs to 
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be converted to its active retinoic acid derivatives before it can function physiologically, the 

reduced sensitivity of methyl group metabolism to retinyl palmitate is not surprising. 

Determining the mechanism by which retinoids exert their actions on GNMT remains 

a major focus of ongoing research in our laboratory. It has been documented that GNMT 

activity is regulated at the posttranslational level by phosphorylation of the subunits that 

constitute the active GNMT tetramer (10) and by allosteric inhibition by folate coenzymes 

(9). Therefore, we certainly have not ruled such posttranslational modification out as a 

potential mechanism for retinoid-mediated GNMT up-regulation. However, we are intrigued 

by the findings of the present study illustrating that GNMT activity was directly proportional 

to abundance of the protein following treatment with all three retinoids. These findings 

clearly indicate that vitamin A compounds modulate GNMT activity at the 

transcriptional/translational level however, because the promoter region for GNMT does not 

contain a retinoid response element, retinoid-mediated GNMT induction may be due to 

increased stability of GNMT protein and/or messenger RNA. We are currently exploring 

these research areas as well as the possibility that the effect of retinoids on GNMT is 

mediated by other factors such as gluconeogenesis. GNMT is found primarily in 

gluconeogenic tissues and is up-regulated during conditions consistent with gluconeogenesis 

such as diabetes (20). Moreover, retinoids, along with hormones such as glucocorticoids and 

glucagon, are required for the expression of phosphoenolpyruvate carboxykinase (PEPCK) 

(23), the rate-limiting enzyme for gluconeogenesis. Hence, it seems logical that the 

stimulation of gluconeogenesis could play a role in mediating the effects of retinoids on 

GNMT. Peng and Evenson (24) showed that alleviation of methionine toxicity by retinol 

pretreatment was prevented after rats were adrenalectomized, therefore; glucocorticoids may 

be required for vitamin A to exert its actions on the catabolism of methionine. 

Our findings also indicate that up-regulation of GNMT results in aberrant methyl 

group metabolism. GNMT constitutes 1-3% of cytosolic protein in the liver (6), therefore; 

this finding is not surprising. The degree of GNMT activation by retinoid compounds 

appears to be directly related to their ability to compromise other SAM-dependent 

transmethylation reactions. This is supported by the fact that ATRA, the most biologically 

active of the retinoid compounds utilized in the present study was the most effective in 
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producing hypomethylated DNA. Such findings clearly indicate that retinoid administration 

may produce a functional methyl group deficiency. The potential for retinoid treatment to 

compromise SAM-dependent transmethylation is also supported by the observation that rats 

treated with ATRA exhibited a significant reduction in creatinine synthesis (McMullen, 

M.H., Rowling, M.J., Ozias, M.K. & Schalinske, K.L., unpublished observations). Because 

creatinine synthesis is one of the major depots for methyl groups from SAM, this further 

stresses the physiological significance of retinoid-mediated alterations in GNMT. Retinoid-

mediated hypomethylation of DNA has significant implications due to the link between DNA 

methylation and a number of important processes, such as gene expression and development 

(25-28). 

During the course of these and other studies, it was evident that rats within a 

treatment group exhibited a significant degree of variability with respect to methylation 

status of DNA. Our treatment period (10 d) was fairly rapid compared to other reports on 

hypomethylation of DNA that typically employ treatment periods ranging from 1-4 weeks 

using methyl- and/or folate-deficient diets (16,28,29). We are currently conducting time 

course studies examining retinoid-mediated changes in methyl group metabolism, which we 

expect will aid in explaining this variability. Although only ATRA-treated rats exhibited a 

statistically significant increase in hypomethylation of DNA, it is important to note that we 

found a positive correlation (r=0.667, P=0.0013) between GNMT activity and DNA 

methylation (data not shown). In contrast to SAM-dependent transmethylation, retinoid-

treated rats failed to exhibit significant changes in hepatic concentrations of total glutathione, 

indicating that the transsulfuration pathway remains partially intact, at least with respect to 

maintaining normal glutathione levels. Earlier work demonstrated that increased methionine 

catabolism by dietary CRA resulted in a significant increase in hepatic taurine concentrations 

that was achieved, in part, at the expense of reduced inorganic sulfate excretion and 

diminished hepatic glutathione levels (5,11). 

In summary, it is clear that retinoid compounds, as vitamin A or as a retinoic acid 

derivative, represent a potent group of compounds capable of perturbing methyl group 

metabolism. Although the doses we utilized in these studies are pharmacological in 

magnitude, our preliminary work suggests that modulation of GNMT can be achieved using 
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more physiological levels (~1 pmol/kg body weight) as well (data not shown). Thus, future 

work is being directed at this issue by performing both dose-response and time-course 

studies. Moreover, the potential impact of retinoid administration on perturbation of the 

folate-dependent one-carbon pool and subsequent remethylation of homocysteine is a 

component of these future studies. This research direction is supported by previous studies 

demonstrating that vitamin A status influences the one-carbon pool (30,31) as well as a 

recent report that plasma homocysteine levels were elevated in patients receiving CRA 

therapy (32). 
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FIGURE LEGENDS 

FIGURE 1 Methyl group metabolism. Methyl groups, as methionine, can be converted to 

SAM and function as a substrate in numerous SAM-dependent transmethylation reactions. 

GNMT regulates the transmethylation potential by controlling the SAM/SAH ratio. 

Following the hydrolysis of S AH, a branch point exists where homocysteine can either be 

remethylated by 5-methyl-THF to generate methionine, or used for the synthesis of 

biologically significant metabolites such as cysteine and glutathione via the transsulfuration 

pathway. Abbreviations used: GNMT; glycine JV-methyltransferase, S AH; S-

adenosylhomocysteine, SAM; S-adenosylmethionine, THF; tetrahydrofolate. 

FIGURE 2 Retinoid administration activated hepatic GNMT in rats. Panel A, elevation 

of hepatic GNMT activity mediated by RP, CRA, and ATRA. All assays were performed in 

triplicate. Panel B, induction of GNMT protein mediated by RP, CRA, and ATRA. The 

immunoblot above the bar graph (Fig. 2B) is a representative example with the relative fold 

induction located below each lane. Data are means + SEM, n- 5. Bars without a common 

letter are significantly different (P < 0.05). Bars with an asterisk are significantly different (P 

< 0.05) when compared to the control group alone. 

FIGURE 3 Correlation between GNMT activity and abundance across retinoid treatment 

groups. Symbols represent individual values within each group. Results of a Pearson 

correlation test are indicated by the solid line (r = 0.772, P = 0.00007). 

FIGURE 4 The enzymatically active tetrameric form of GNMT was mediated by retinoid 

treatment. Cytosolic extracts were subjected to the cross-linking reagent disuccinimidyl 

suberate (DSS) prior to sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-

PAGE) and immunoblotting using a polyclonal GNMT antibody. As indicated by the 

arrows, bands at -32 kD represent the monomeric form of GNMT, whereas the tetrameric 

form is shown at a molecular weight of ~128 kD monomer. No immunoreactive bands were 

discernible at 64 kD, representing the dimeric form of the protein (data not shown). Hepatic 
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extracts from control, RP-, CRA-, and ATRA-treated rats in the absence of DSS treatment 

are shown in lanes 1-4, respectively, whereas the same samples subjected to DSS cross-

linking prior to SDS-PAGE are shown in lanes 5-8. 

FIGURE 5 Administration of ATRA to rats resulted in hepatic DNA hypomethylation. In 

this assay, the ability to serve as an acceptor for methyl groups is inversely proportional to 

endogenous methylation status. Data are means + SEM, n = 5. Bars without a common 

letter are significantly different (P < 0.05). 
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RETINOIC ACID AND GLUCOCORTICOID TREATMENT INDUCE 

HEPATIC GLYCINE N-METHYLTRANSFERASE AND LOWER 

PLASMA HOMOCYSTEINE CONCENTRATIONS IN RATS AND RAT 

HEPATOMA CELLS1 

A paper published in the Journal of Nutrition2,3 

Matthew J. Rowling4 and Kevin L. Schalinske4,5 

Abstract 

Perturbation of folate and methyl group metabolism is associated with a number of 

pathological conditions, including cardiovascular disease and neoplastic development. 

Glycine N-methyltransferase (GNMT) is a key protein that functions to regulate the supply 

and utilization of methyl groups for S-adenosylmethionine (SAM)-dependent 

transmethylation reactions. Factors or conditions that have the ability to regulate GNMT and 

the generation of homocysteine, a product of transmethylation, have significant implications 

in the potential perturbation of methyl group metabolism. We have shown that retinoid 

compounds induce active hepatic GNMT, resulting in compromised transmethylation 

processes. Because retinoids can stimulate gluconeogenesis, a condition known to alter 

methyl group and homocysteine metabolism, the current study was undertaken to determine 

the relationship between all-Zrara-retinoic acid (RA) and gluconeogenic hormones on these 

metabolic pathways. It was found that intact adrenal function was not required for RA to 

induce and activate hepatic GNMT; however, treatment of rats with dexamethasone (DEX) 

was as effective as RA to induce GNMT in rat liver. The marked increase in plasma total 

homocysteine levels observed in adrenalectomized rats was reduced to normal levels by 

treatment with either RA or DEX, indicating that the transsulfuration and/or remethylation 

pathways may be enhanced. Moreover, co-administration of RA and DEX resulted in an 

additive effect on GNMT induction. Similar findings were also observed in a rat hepatoma 

cell culture model using H4IIE cells. Taken together, these results demonstrate that both RA 
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and DEX independently induce GNMT, thereby having significant implications for the 

potential interaction of retinoid administration with diabetes. 

Key words: • glycine N-methyltransferase • methyl groups • homocysteine • retinoic acid • 

dexamethasone 
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Introduction 

Glycine iV-methyltransferase (GNMT)6 is a key cytosolic protein in the regulation of 

methyl group and folate metabolism that controls the supply of available methyl groups for 

S-adenosylmethionine (SAM)-dependent transmethylation reactions (1). By disposing of 

excess methyl groups as sarcosine, a molecule that has no known physiological function, 

GNMT controls the SAM/S-adenosylhomocysteine (SAH) ratio (2), which is considered an 

important index of transmethylation potential because of the ability of SAH to inhibit the 

majority of SAM-dependent transmethylation reactions (3). Interestingly, GNMT does not 

appear to be among the methyltransferases that are sensitive to such SAH inhibition (4). 

Over 100 critical transmethylation reactions readily occur in the mammalian cell, including 

the methylation of DNA and methylation reactions required during the synthesis of vital 

biological compounds such as neurotransmitters, phospholipids, and nucleic acids (3,4). 

Therefore, maintaining an optimum supply of activated methyl groups (i.e. SAM) is critical 

for the proper functioning of a vast number of enzymes that catalyze methyl transfer 

reactions that are essential for the prevention of disease. 

A number of interactions exist between the methyl group- and folate-dependent one-

carbon metabolism pathways to ensure that methyl groups are readily available for use in 

SAM-dependent transmethylation reactions (Fig. 1). SAM serves as an inhibitory ligand for 

5,10-methylenetetrahydrofolate reductase (MTHFR) (5), therefore; an elevated intracellular 

supply of SAM decreases the synthesis of 5-methyltetrahydrofolate (5-methyl-THF). 

Additionally, 5-methyl-THF is an allosteric inhibitor of GNMT (6,7), hence; an elevated 

concentration of SAM indirectly leads to its own catabolism by increasing GNMT activity 

through the inhibition of 5-methyl-THF synthesis. GNMT can then dispose of the excess 

methyl groups supplied by SAM as sarcosine. In contrast, decreased SAM levels facilitate 

the production of 5-methyl-THF and subsequent folate-dependent remethylation of 

homocysteine by 5-methyl-THF to regenerate methionine. The rise in 5-methyl-THF 

concentrations also inhibits GNMT activity, which in turn conserves the supply of activated 

methyl groups for important SAM-dependent transmethylation reactions. Following 

transmethylation, SAH is hydrolyzed to generate homocysteine and adenosine. 

Homocysteine can then be remethylated by either methionine synthase (MS) or 
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betainehomocysteine methyltransferase (BHMT), processes that require 5-methyl-THF or 

betaine, respectively, or committed to the transsudation pathway by cystathionine /?-

synthase (C/?S) for its catabolism. Besides the removal of homocysteine, transsudation is 

essential for the production of important molecules such as cysteine and glutathione. 

Because of the central role of GNMT in the regulation of methyl group and folate 

metabolism, a disturbance of GNMT function may alter the synthesis of such compounds and 

thus result in a number of pathological conditions (8-10). 

A number of nutritional components and hormones have recently been identified as 

factors that modulate the expression of key enzymes that play critical roles in methyl group 

and folate metabolism. We showed that the administration of retinoid compounds activated 

and induced GNMT expression in rats, which resulted in compromised methylation of 

hepatic DNA (11). Others have shown in animal and cell culture studies that conditions 

associated with a lack of insulin (e.g. diabetes) and administration of the counterregulatory 

hormones, glucagon and glucocorticoids increased the expression of critical enzymes central 

to methyl group and folate metabolism, including C/?S and MTHFR (12-14), which are 

required for the removal of homocysteine. Moreover, Xue and Snoswell (15) discovered that 

GNMT activity was elevated 65-fold in diabetic sheep. Although it has not been determined 

whether gluconeogenic conditions prevalent during uncontrolled diabetes increase the 

expression of GNMT, it is known that GNMT resides primarily in the liver, kidney, and 

pancreas (16), organs that play significant roles during gluconeogenesis. Therefore, it is 

conceivable that GNMT can be regulated by gluconeogenic factors such as increased 

counterregulatory hormone levels, an occurrence that in turn, may affect other critical aspects 

of methyl group and folate metabolism such as the metabolism of homocysteine. 

Hence, we postulated that the ability of retinoids to modulate GNMT was due to an 

association between retinoids and gluconeogenesis. All-Zrazw-retinoic acid has been shown 

to increase the gene expression of phosphoenolpyruvate carboxykinase (PEPCK) (17,18), the 

rate-limiting enzyme of gluconeogenesis. However, unlike PEPCK, no retinoic acid 

response element has been found in the promoter region for GNMT. Thus, it seems likely 

that the affect of retinoids on GNMT expression is secondary to other events, such as 

elevated counterregulatory hormone levels. Peng and Evenson (19-21) showed that 
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methionine toxicity was alleviated in rats pretreated with retinol, an occurrence that was 

reversed when rats were adrenalectomized, indicating that the adrenal glands could play a 

key mediating role in the induction of GNMT by retinoid compounds. In the present study, 

we examined the role of the adrenals and dexamethasone (DEX) in the regulation of GNMT, 

alone and in combination with RA using both an in vivo rat model and cell culture studies. 

Furthermore, we determined whether the modulation of GNMT due to the various treatments 

was associated with alterations of plasma homocysteine levels. 

Materials and Methods 

Chemicals 

Materials were obtained form the following sources: tissue culture reagents, Life 

Technologies, Inc.(Rockville, MD); S-adenosyl-L-[mefAy/-3H]methionine, PerkinElmer 

(Boston, MA); goat anti-rabbit immunoglobulin G horseradish peroxidase, Southern 

Biotechnology (Birmingham, AL); ECL Western blotting detection reagents, Amersham 

Pharmacia (Piscataway, NJ); S-adenosyl-L-methionine and dexamethasone, Sigma Chemical 

(St. Louis, MO); and protease inhibitors and RA, Calbiochem (La Jolla, CA). All other 

reagents were of analytical grade. 

Animal experiments 

All animal experiments were approved by and conducted in accordance with Iowa 

State University Laboratory Animal Resources Guidelines. Adrenalectomized (ADX) and 

sham-operated male Sprague Dawley (Harlan Sprague Dawley, Indianapolis, IN) rats (125-

149 g) were housed in plastic cages and given free access to food and water in a room with a 

12-h light: dark cycle. ADX rats received saline (10 g/LNaCl) as drinking water. The 

composition of the control diet was the same as previously described (22) except the AIN-

93G formulation of vitamin and mineral mix was utilized. After rats were acclimated to both 

the control diet and oral administration of com oil, they were randomly assigned to various 

treatment groups (five rats per group) and given a daily oral dose of either vehicle (corn oil) 

or vehicle containing RA (30 [xmol/kg BW). Although this represents a pharmacological 

dose of RA and we have shown that levels as low as 5 pmol/kg BW effectively elevated 
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GNMT activity, the maximal saturating effect of RA on GNMT induction was achieved 

using the higher concentrations1. For glucocorticoid studies, rats were given a daily 

intraperitoneal injection of DEX (1 mg/kg BW) that was dissolved in a vehicle containing 

propylene glycol: absolute ethanol: glacial acetic acid: ascorbic acid (95:5:0.6:0.01, 

v/v/v/w). In preliminary studies, we found that this level of DEX administration was equally 

effective as higher doses (i.e., saturating) and allowed maintenance of normal body weight. 

After a 5-7 d treatment period with RA and/or DEX, rats were anesthetized with a 

intraperitoneal injection of ketamine: xylazine (90:10 mg/kg BW) and blood samples were 

collected via cardiac puncture in heparinized syringes, centrifuged at 4,000 X g for 8 min, 

and stored at -20°C until analysis. Liver and pancreatic tissue samples were rapidly removed 

and homogenized in ice-cold buffer containing: 10 mmol/L sodium phosphate (pH 7.0), 0.25 

mol/L sucrose, 1 mmol/L EDTA, 1 mmol/LM sodium azide, 0.1 mmol/L 

phenylmethylsulfonyl fluoride. Following centrifugation at 20,000 x g for 30 min, p-

mercaptoethanol was added to the resulting supernatants to a final concentration of 10 

mmol/L and they were stored at -70°C for subsequent analysis of GNMT activity and 

abundance as previously described (11,23). 

Cell culture 

Rat hepatoma H4IIE cells (American Type Culture Collection, Manassas, VA) were 

grown in 150-cm2 flasks to 70-75% confluence under 5% CO2 in a humidified incubator at 

37°C in Dulbecco's modified Eagles medium containing 100 mL/L fetal bovine serum, 

penicillin (100,000 units/L), and streptomycin (100 mg/L). Cells were given fresh media 

immediately prior to treatments. Cells were either treated alone, or with various 

combinations of DEX (0.1 fimol/L), dibutyryl-adenosine-3,5-cyclic monophosphate 

(Bt2cAMP, 0.5 mmol/L ), glucagon (0.5 jumol/L) and/or RA (10 nmol/L). Preliminary dose-

response studies established these levels as optimal for modulating methyl group metabolism. 

Following a 72- h incubation period in the presence of the various treatment reagents, cells 

were detached with 2.5 g/L trypsin/1 mmol/L EDTA, washed twice in Hanks' balanced salt 

solution, and lysed on ice in a buffer containing: 10 mmol/L Hepes (pH 7.4), 10 mmol/L 
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sodium pyrophosphate, 50 mmol/L sodium fluoride, 50 mmol/L ^-glycerophosphate, 5 

mmol/L EDTA, 1 mmol/L sodium orthovanadate, 2 mmol/L benzamidine, 100 mg/L 

leupeptin and pepstatin, 250 mg/L soybean trypsin inhibitor, 0.2 mmol/L 

phenylmethylsulfonylflouride, 24 mg/L /»-nitroguanidinobenzoate, and 5 mL/L Nonidet P-40. 

Lysates were centrifuged at 16,000 x g for 8 min after which supernatants were removed 

and stored at -70°C for subsequent analysis of GNMT protein abundance. 

Measurement of GNMT activity 

The enzymatic activity of GNMT was determined in tissue supernatants as described 

by Cook and Wagner (1984) with minor modifications (11). The assay reaction mixture (100 

}o.L) consisted of 200 mmol/L Tris buffer (pH 9.0), 5 mmol/L dithiothreitol, 2 mmol/L 

glycine, and 2 mmol/L [methyl-3H/SAM (47.7 kBq/^imol). The reaction was initiated with 

250 p.g cytosolic protein and incubation of the assay mixture was carried out at 25°C for 30 

min. The reaction was terminated by the addition of trichloroacetic acid and activated 

charcoal was used to remove unreacted radiolabeled SAM by centrifugation. An aliquot of 

the resulting supernatant containing the radiolabeled product was removed for liquid 

scintillation counting and GNMT activity was expressed as pmoles sarcosine formed/ 

(min-mg protein). All GNMT assays were performed in triplicate. 

Analysis of GNMT protein abundance 

The abundance of GNMT protein in tissue and cell culture extracts was determined 

using immunoblotting techniques as previously described (11,23,25). Briefly, a 10-20% 

gradient gel was cast for SDS-polyacrylamide gel electrophoresis for determination of the 

abundance of the 32 kDa monomer subunit of GNMT, which functions enzymatically in its 

homotetrameric form. Following separation, proteins were electrophoretically transferred to 

a nitrocellulose membrane, followed by incubation with either an affinity-purified polyclonal 

GNMT antibody (kindly provided by C. Wagner, Vanderbilt University) or a monoclonal 

GNMT antibody (26) that recognizes a specific peptide sequence within the protein (kindly 

provided by Y-M.A. Chen, National Yang-Ming University, Taipei, Taiwan). For either 
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primary antibody, blots were incubated overnight at 4°C followed by a 1-h incubation at 

room temperature with goat anti-rabbit horseradish peroxidase secondary antibody. GNMT 

abundance was assessed by chemiluminescence detection and, following multiple exposures 

to Kodak X-Omat AR film, densitometric analysis was performed using SigmaGel Software 

(SPSS, Chicago, II). For both enzyme activity measurements and Western blot analysis, total 

soluble protein concentration in liver and cell extracts was determined by the method of 

Bradford (27) using a commercial kit (Coomassie Plus, Pierce Chemical, Rockford, IL) and 

bovine serum albumin as a standard. 

Determination of plasma homocysteine concentrations 

Total (free + protein bound) homocysteine concentrations were determined using 

high-performance liquid chromatography with fluorescence detection (28). Plasma samples 

were derivatized with 7-flouro-2-oxa-1,3-diazole-4-sulfonate and a 100 ^L sample 

containing the thiol adducts was injected onto a pBondapak Cig Radial-Pak column (Waters 

Corporation, Milford, MA) using a mobile phase consisting of 40 mL/L acetonitrile in 0.1 

mol/L potassium phosphate (pH 2.1) buffer, ^-acetylcysteine was added to plasma samples 

prior to derivatization as an internal standard. 

Statistical analysis 

The mean values from each treatment group were subjected to a one- or two-way 

ANOVA (29). If the ANOVA was significant (P < 0.05), the means were compared using 

Fisher's least significant difference procedure. All statistical analysis was performed using 

SigmaStat software (SPSS, Chicago, IL). 

Results 

Intact adrenal function was not required for the induction of hepatic GNMT by RA 

As shown in Fig. 2, the activity and abundance of GNMT was elevated following 

administration of RA to adrenalectomized rats. As we have shown previously, RA increased 
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both the activity (Fig. 2A) and abundance (Fig. 2B) of hepatic GNMT ~2.0-fold in sham-

operated control rats. The immunoblot above the bar graph in Fig. IB is a representative 

sample from each treatment group with the relative fold-induction indicated under each lane. 

Removal of the adrenal glands did not alter the basal activity or the abundance of GNMT; 

administration of RA was equally effective at elevating GNMT activity (1.9-fold) and 

abundance (2.0-fold) in ADX rats compared to their respective untreated controls. These 

findings indicate that RA regulates methyl group metabolism in a manner that is independent 

of adrenal function. 

Hepatic GNMT was activated and induced by both RA and glucocorticoid treatment 

Although it did not appear that adrenal function was required for GNMT regulation 

by RA, a primary objective was to determine whether glucocorticoids, alone or in 

combination with RA, could also stimulate GNMT expression (Fig. 3). For sham-operated 

rats, treatment with DEX increased the activity of GNMT in a manner similar to that 

exhibited by RA-treated rats (1.6- and 1.9-fold, respectively). Similar results were observed 

following treatment of ADX rats with RA and DEX; hepatic GNMT activity was elevated 

2.0- and 2.4-fold, respectively. Moreover, when administered together, RA and DEX clearly 

appeared to have an additive effect on activating GNMT in both sham-operated (2.6-fold) 

and ADX (3.6-fold) rats compared to control values. The activation of hepatic GNMT by 

RA and DEX, alone or in combination, was reflected in the abundance of the protein, as 

shown by the Western blot in Fig. 4A. In contrast, pancreatic GNMT protein abundance was 

not responsive to either RA, as we have previously reported (25), or DEX treatment in sham-

operated (Fig. 42?) or ADX rats (data not shown). The activity of GNMT in the pancreas 

also remained constant regardless of RA or DEX administration in both sham-operated and 

ADX rats (data not shown). These results indicate that in addition to RA, the glucocorticoid 

DEX was equally effective at regulating the expression of GNMT in both sham-operated and 

ADX rats in a tissue-specific manner; the additive effect of co-administration of RA and 

DEX suggest that the basis for their action, at least in part, is mechanistically distinct from 

each other. 
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Homocysteine levels were reduced by RA and DEX treatment of adrenalectomized rats 

Recent work has shown that a diabetic state (i.e., the absence of insulin) or an 

equivalent elevation in circulating counter-regulatory hormones (i.e., glucagon and/or 

glucocorticoids) leads to a decrease in plasma homocysteine concentrations in rats due to an 

increase in homocysteine catabolism through the transsulfuration pathway (12-14). We 

explored the possibility that RA had a similar ability to reduce homocysteine levels, 

indicating that the excessive production of homocysteine due to GNMT induction resulted in 

an increase in its metabolism. Fig. 5 demonstrates that plasma homocysteine levels were 

elevated greater than 2-fold as a result of adrenalectomy. Moreover, both RA and DEX were 

effective in reducing homocysteine levels (41 and 74%, respectively) in ADX rats; no further 

decrease was observed when RA and DEX were provided simultaneously. In contrast, 

homocysteine concentrations were not significantly reduced by either RA and/or DEX 

treatment in sham-operated rats. 

Induction of GNMT in rat hepatoma cells 

To assess the ability of RA and hormones to directly induce expression of GNMT 

protein, we utilized a cell culture system consisting of a rat hepatoma cell line. GNMT is not 

expressed to a significant degree in most cell lines, including human HepG2 cells; however, 

in preliminary experiments we found that H4IIE cells did express discernible levels of 

GNMT and the regulation of GNMT in this cell line was sensitive to factors shown to be 

effective in vivo. As shown in Fig. 6, GNMT abundance in H4IIE cells was subject to 

regulation by RA (lanes 1-4). This regulation of GNMT protein abundance by RA in H4IIE 

cells was similar to what was observed in rat liver (lanes 5-8). For comparative purposes, 

Fig. 6 also demonstrates that the level of expressed GNMT protein, relative to a given 

amount of total cellular protein, was significantly less in H4IIE cells compared to rat liver. 

Further comparison of GNMT regulation in H4IIE cells to rat liver is shown in Fig. 7. 

Similar to the rat liver data shown earlier in Fig. 3, RA and DEX treatment of H4IIE cells 

increased GNMT abundance 2.6- and 3.6-fold, respectively. Moreover, co-administration 

with both compounds resulted in an additive 4.8-fold stimulation of GNMT expression. 

These results using a cell culture model demonstrate that both RA and DEX regulate methyl 

group metabolism directly, in the absence of other physiological factors. Moreover, 
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pretreatment of H4IIE cells with actinomycin D abolished the ability of both RA and DEX to 

increase GNMT abundance, indicating transcriptional mechanisms were involved (data not 

shown). 

In addition to DEX, a number of other components have also been shown to play a 

potential role in the regulation of GNMT, methyl group and homocysteine metabolism. 

Thus, H4IIE cells were treated with various combinations of RA, DEX, BtzcAMP, and 

glucagon (Fig. 8). As shown earlier in Fig. 7, the immunoblot shown in Fig. SA 

demonstrates that exposure of H4IIE cells to RA or DEX (lanes 2 and 3, respectively, 

compared to lane 1) resulted in the induction of GNMT protein (2.1 - and 1.8-fold, 

respectively) and cells incubated with both RA and DEX (lane 6) exhibited an elevation of 

GNMT protein abundance that appeared to be additive (4.8-fold increase). In contrast, 

incubation with Bt2cAMP alone did not induce GNMT compared to controls (compare lanes 

4 and lane 1). Moreover, the addition of Bt^cAMP appeared to attenuate GNMT induction in 

cell cultures treated with RA and/or DEX (compare lanes 5 and 2; lanes 7 and 3; lanes 8 and 

6). As shown in Fig. 8B, experiments with glucagon-treated H4IIE cells (lane 3) resulted in 

similar findings as Bt^cAMP (lane 4) in that no induction was discernible compared to 

untreated cells (lane 1), in contrast to the 4.5-fold increase exhibited by cells treated with 

both RA and DEX (lane 2). 

Discussion 

GNMT regulates the supply of methyl groups available for transmethylation reactions 

through its control of the SAM/SAH ratio (1). Because GNMT constitutes 1-3% of total 

cytosolic protein in the liver (2), and its enzymatic activity is strongly inhibited by folate 

coenzymes (6,7), the physiological role of GNMT appears to be of major significance. A 

number of conditions are known to produce alterations in GNMT function and subsequent 

methyl group metabolism including various nutritional and/or metabolic disorders such as 

folate deficiency (30), methyl group excess (31,32), ethanol administration (33), diabetes 

(15), genetic disorders (34,35) as well as gender (25), and age (36). Because an adequate 

supply of methyl groups must be maintained to ensure that important SAM-dependent 
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transmethylation reactions (e.g. DNA methylation) can readily occur, a perturbation of 

GNMT may lead to a number of pathological conditions, such as carcinogenesis. 

Here, and in our earlier work (11,23,25), we showed that retinoid compound represent 

a family of compounds that have the ability to modulate GNMT and methyl group 

metabolism. In addition, the results of the present study clearly indicate that GNMT is 

modulated by RA at the transcriptional/translational level in H4IIE rat hepatoma cells. This 

is a novel regulatory aspect because previous work in tissue culture has focused on 

posttranslational modification of GNMT via phosphorylation or allosteric binding by 5-

methyl-THF as mechanisms by which GNMT can be modulated (6,7). Although we 

certainly have not ruled such posttranslational modification of GNMT out as an explanation 

of our findings, a more likely scenario for the retinoid-mediated increase of GNMT protein 

abundance observed in the present study may be increased stability of the protein and/or 

GNMTmRNA. 

In contrast to previous work that showed adrenal function was required to mediate the 

catabolic events of vitamin A compounds on methionine metabolism (19-21), our results 

indicate that RA exerted its effects on GNMT independent of intact adrenal function and 

increased secretion of glucocorticoids. We demonstrated for the first time, however, that 

treatment with exogenous glucocorticoids (DEX) was as effective as RA in inducing active 

GNMT in hepatic tissue of both intact and ADX rats. Furthermore, when DEX and RA were 

co-administered to rats and H4IIE cells, the induction of active GNMT appeared to be 

additive, suggesting that these compounds may exert their actions by two distinct cellular 

mechanisms. In contrast, it was clear that GNMT was not sensitive to treatment with 

glucagon or Bt%cAMP treatment. Because no response elements for RA, glucocorticoids, or 

cAMP are known to exist in the promoter region of GNMT, it is likely that the effects of 

these compounds on GNMT is secondary to other effects. 

Based on earlier studies that showed that the catabolism of methionine was enhanced 

in rats pre-treated with retinol (21), we hypothesized that increased production of methionine 

degradation products (i.e. homocysteine) would occur as a result of GNMT activation. 

However, our results do not indicate that GNMT induction by either RA or DEX treatment is 

consistent with increased homocysteine concentrations. In fact, both RA and DEX 
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treatments essentially normalized elevated homocysteine concentrations present in ADX rats, 

indicating that the catabolism of homocysteine through the transsulfuration pathway may 

have been enhanced following treatment with these compounds. This is consistent with 

earlier findings that showed diabetic conditions (i.e. gluconeogenesis) and treatment with 

glucocorticoids facilitated the removal of homocysteine through the transsulfuration pathway 

(12,14,15). Thus, our findings with RA-treated rats indicate that in addition to 

glucocorticoids (14), retinoids may represent a group of compounds that increase the 

expression of enzymes central to the transsulfuration pathway. We are intrigued by the fact 

that homocysteine levels were elevated in ADX rats before treatment with RA and/or DEX 

despite GNMT activity remaining unaltered compared to the intact control animals. The 

latter indicates that the basal rate of methionine catabolism may not be dependent on adrenal 

function. Likewise, the induction of active GNMT by RA and DEX was similar in both 

intact and ADX rats. Therefore, it is possible the increased homocysteine levels in ADX rats 

resulted from the down-regulation of the remethylation process, which may be related to 

decreased glucocorticoid synthesis by the adrenals. This is supported by previous studies 

examining the hormonal regulation of MTHFR that showed glucocorticoids enhance its 

enzymatic activity (37). Recent data in our laboratory indicates that retinoids may have a 

similar ability to enhance the folate-dependent remethylation of homocysteine in intact rats 

by increasing methionine synthase (MS) activity (38). In the present study, administration of 

RA and/or DEX did not reduce plasma homocysteine levels in intact rats; however, we have 

consistently found that younger rats treated with RA for longer time periods (8-10 d) had a 

significant (~50%) reduction in the concentration of plasma homocysteine (38). 

A number of other possible explanations for the reduction of homocysteine levels 

must be considered in addition to enhanced transsulfuration. Although it is logical to 

presume that the increased catabolism of methionine following GNMT induction would 

produce elevated homocysteine concentrations, the subsequent down-regulation of other 

SAM-dependent transmethylation reactions may be responsible for reducing homocysteine 

levels. Previous work in our laboratory has demonstrated retinoid-mediated GNMT 

induction is consistent with the perturbation of a number of SAM-dependent 

transmethylation reactions, including the methylation of DNA and the synthesis of creatinine 
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(25), and may be indirectly responsible for the development hepatic steatosis (39), 

presumably due to decreased phosphatidylcholine (PC) synthesis (40). Interestingly, a recent 

study showed that phosphatidylethanolamine N-methyltransferase, the SAM-dependent 

enzyme required for PC synthesis, plays a major role in the regulation of homocysteine 

metabolism (41). Creatinine and PC synthesis are SAM-dependent transmethylation 

reactions that require a significant supply of methyl groups, therefore; it seems plausible that 

if either reaction were perturbed, a reduction of plasma homocysteine concentrations would 

occur. 

We have found an association between glucocorticoid and retinoid administration 

with alterations of methyl group/homocysteine metabolism. Thus, our findings have 

significant implications in a number of different areas related to health and disease. Our 

findings add to the increasing evidence that implicates gluconeogenic conditions, such as 

uncontrolled diabetes, in the alteration of methyl group and homocysteine metabolism. 

Diabetes and administration of glucocorticoids and/or glucagon are known to modulate 

homocysteine metabolism and the activity of GNMT (12-15). Similarly, the results in the 

present study indicate that administration of RA can modulate methyl group metabolism, 

which may be related to retinoid-mediated gluconeogenic conditions. This is supported by 

preliminary data in our lab that showed diabetic rats were significantly more sensitive to 

increases in blood glucose levels and GNMT induction by treatment with RA (Rowling, M. 

J. and Schalinske, K. L., unpublished data). These findings suggest that diabetic individuals 

receiving retinoid therapy for conditions such as cystic acne and various forms of leukemia 

may require alternative therapies for their conditions or need to be closely monitored. The 

sensitivity of humans to perturbation of methyl group metabolism by retinoid compounds 

may also have significance with respect to individuals carrying common mutations of key 

enzymes involved in folate, and methyl group/homocysteine metabolism, such as C0S and 

MTHFR polymorphisms. With the increasing prevalence of retinoids being prescribed for 

therapeutic purposes (-800,000 new cases each year) (42), the need for monitoring these 

individuals may become more apparent. 
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FIGURE LEGENDS 

FIGURE 1 Folate, methyl group, and homocysteine metabolism. Glycine N-

methyltransferase (GNMT) regulates the ratio of S-adenosylmethionine (SAM) to S-

adenosylhomocysteine (SAH), thereby optimizing transmethylation reactions (X —> X-CH3), 

such as the methylation of DNA, RNA, proteins, and phospholipids. SAM is an allosteric 

inhibitor of 5,10-methylenetetrahydrofolate reductase (MTHFR) and positive modulator of 

cystathionine ^-synthase (CBS), whereas 5-methyltetrahydrofolate (5-CH^-THF) is an 

inhibitory ligand for GNMT. Other abbreviations used: BHMT, betaine homocysteine 

methyltransferase; MS, methionine synthase; THF, tetrahydrofolate. 

FIGURE 2 Induction of hepatic glycine N-methyltransferase (GNMT) by retinoic acid 

(RA) in sham-operated and adrenalectomized (ADX) rats. Sham-operated and ADX male 

Sprague Dawley rats were treated with a daily dose of RA (30 ^mol/kg BW) for 7 d. Liver 

samples were removed and analyzed for GNMT activity and abundance as described under 

"Materials and Methods." Data are expressed as means ± SEM (n=5) and bars denoted with 

different letters are significantly different (p < 0.05). A, GNMT enzyme activity in sham-

operated and ADX rats following administration of RA or corn oil. B, Western blot analysis 

of GNMT abundance in sham-operated and ADX rats following administration of RA or 

corn oil. A polyclonal IgG-purified antibody against rat liver GNMT was used and a 

representative immunoblot is shown with the relative fold induction indicated under each 

lane. 

FIGURE 3 Induction of hepatic glycine N-methyltransferase (GNMT) by retinoic acid 

(RA), dexamethasone (DEX) in sham-operated and adrenalectomized (ADX) rats. Sham-

operated and ADX male Sprague Dawley rats were treated with either a daily dose of RA (30 

pmol/kg BW), DEX (1 mg/kg BW), or both. After 5 d, liver samples were removed and 

GNMT activity was determined as described under "Materials and Methods". Data are 

means ± SEM (n=5) and bars denoted by a different letter are significantly different (p < 

0.05). 
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FIGURE 4 Regulation of hepatic and pancreatic glycine N-methyltransferase (GNMT) 

abundance by retinoic acid (RA) and dexamethasone (DEX) in sham-operated and 

adrenalectomized (ADX) rats. Tissue samples from the same rats as described for Fig. 3 

were used for the determination of GNMT abundance by Western blot analysis as described 

under "Materials and Methods". A, representative immunoblot of hepatic GNMT abundance 

in sham-operated and ADX rats treated with RA, DEX, or both compounds. The relative 

fold-induction is indicated under each lane. B, representative immunoblot of pancreatic 

GNMT abundance in sham-operated rats treated with RA, DEX, or both compounds. All 

blots are representative examples from individual rat tissue samples. 

FIGURE 5 Plasma homocysteine concentrations in sham-operated and adrenalectomized 

(ADX) rats following treatment with retinoic acid (RA), dexamethasone (DEX), or both. 

Plasma samples from the same rats as described for Fig. 3 were obtained for the assessment 

of total homocysteine concentrations by high-performance liquid chromatography as 

described under "Materials and Methods". Data are means ± SEM (n=5) and bars denoted by 

a different letter are significantly different (p < 0.05). 

FIGURE 6 Comparison of retinoic acid (RA) regulation of glycine N-methyltransferase 

(GNMT) abundance in rat hepatoma cells and rat liver. H4IIE rat hepatoma cells (lanes 1-4) 

were treated with 10 ^imol/L RA dissolved in MeiSO (lanes 2 and 4) or an equivalent 

volume ofMe2SO (100 jxL/L final concentration) alone (lanes 1 and J). Following a 72-h 

incubation period, cells were lysed and Western blot analysis was performed as described 

under "Materials and Methods". Male Sprague Dawley rats were administered a single dose 

of RA (30 pmol/kg BW) or corn oil daily for a total of 7 d. Liver samples were removed for 

determination of GNMT abundance by Western blot analysis as described under "Materials 

and Methods". For comparison purposes, 75 ( lanes 1, 2, 5 and 6) and 150 \xg of total protein 

(lanes 3,4,7 and 8) were analyzed for both cell and tissue lysates. 

FIGURE 7 Regulation of glycine N-methyltransferase (GNMT) by retinoic acid (RA) and 

dexamethasone (DEX) in rat hepatoma cells. H4IIE rat hepatoma cells were treated with 
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either DEX (0.1 pmol/L), RA (10 |imol/L), or both. After a 72-h incubation period, cells 

were lysed and GNMT abundance was determined as described under "Materials and 

Methods". The representative immunoblot and the densitometric analysis shown in the bar 

graph were generated from three independent experiments. 

FIGURE 8 Regulation of glycine N-methyltransferase (GNMT) abundance by various 

combinations of retinoic acid (RA), dexamethasone (DEX), dibutyryl-cAMP (BtzcAMP), and 

glucagon in rat hepatoma cells. H4IIE rat hepatoma cells were treated alone or with various 

combinations of DEX, RA, Bt%cAMP, or glucagon. After a 72-h incubation period, cells 

were lysed and GNMT abundance was determined as described under "Materials and 

Methods". A, lane 1, MeaSO-treated control; lane 2, RA (10 (imol/L); lane 3, DEX (0.1 

|xmol/L); lane 4, Bt^cAMP (0.5 mmol/L); lane 5, RA + Bt^cAMP; lane 6, RA + DEX; lane 7, 

DEX + BtacAMP; and lane 8, RA + DEX + Bt^cAMP. B, lane 1, MeaSO-treated control; 

lane 2, RA + DEX; lane 3, glucagon (0.5 jjmol/L); lane 4, Bt^cAMP; and lane 5, rat liver 

(RA-treated) positive control. 
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GENERAL CONCLUSIONS 

GNMT is a key regulatory protein that controls the supply of methyl groups available 

for transmethylation reactions by facilitating the disposal of excess SAM. Therefore, 

inappropriate activation of GNMT may lead to conditions consistent with methyl group 

deficiency. In the work presented in this dissertation, I illustrated for the first time that 

retinoids represent a family of nutritional compounds that have the ability to induce the gene 

expression of hepatic GNMT, which in turn resulted in the increased catabolism of methyl 

groups and compromised transmethylation reactions, namely the methylation of hepatic 

DNA. These findings clearly indicate that GNMT up-regulation has possible implications 

for the development of pathological conditions that are associated with abnormal methyl 

group metabolism, such as cancer, neural tube defects, and heart disease (Salmon and 

Copeland 1954; Clarke et al. 1991; Haynes 2003). 

Enzymatically active GNMT resides primarily in gluconeogenic tissues, such as the 

liver, kidney, and pancreas (Yeo and Wagner 1994), which suggests that GNMT has a role 

during gluconeogenesis. Additionally, GNMT has been shown to be up-regulated during 

conditions associated with gluconeogenesis, a process during which retinoic acid, along with 

hormones such as glucocorticoids and glucagon, are known to increase the gene expression 

of various gluconeogenic enzymes, such as PEPCK, the rate-limiting enzyme of 

gluconeogenesis (Pan et al. 1990; Shin and McGrane 1998). However, to date no retinoic 

acid response elements have been discovered in the promoter region of the GNMT gene, 

indicating RA may require alternative signals to exert its effect on GNMT. Previous studies 

showed that functional adrenal glands were required to alleviate the symptoms of methionine 

toxicity following treatment with retinol (Peng and Evenson 1982), indicating that 

glucocorticoid secretion from the adrenals may play a key role in the catabolism of 

methionine. Hence, we postulated that the effect of retinoids on GNMT expression is 

mediated by an induction of gluconeogenesis due to increased blood concentrations of 

counter-regulatory hormones, namely glucocorticoids secreted from the adrenals. However, 

since my studies showed that GNMT activity and abundance did not differ between ADX 

and sham control rats given DEX and/or RA, I have concluded that, although it is clear that 
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glucocorticoids have a similar ability to that of retinoids to induce enzymatically active 

GNMT, the induction of GNMT by retinoids does not require adrenal function. We believe 

that the discovery of glucocorticoids as hormonal factors that can modulate GNMT 

expression is a significant finding however, because it indicates that, like retinoids, elevated 

levels of glucocorticoids, which are commonplace during uncontrolled diabetes, may perturb 

methyl group metabolism in a fashion similar to that of RA. 

The mechanism by which nutritional and hormonal factors increase GNMT 

expression remains unclear. Because our findings do not suggest a synergistic effect results 

from the co-administration of retinoids and glucocorticoids, but rather an additive effect on 

the induction of active GNMT protein in both animal and cell culture models, we believe it is 

likely that these two families of compounds modulate GNMT by two separate mechanisms. 

This is supported by our work that showed co-administration of RA and DEX at saturating 

concentrations produced an additive effect in increasing GNMT activity and abundance in 

rats. Likewise, GNMT abundance was elevated in H4IIE cells in a similar fashion upon 

direct administration of DEX and RA, which clearly suggests that the effect of these 

compounds on GNMT is mediated at the cellular level. 

Elucidating the mechanism by which nutritional and hormonal factors influence 

GNMT gene expression remains an area of intense research in our laboratory. We have 

recently discovered that the effect of RA and DEX on GNMT was prevented in H4IIE cells 

pre-treated with actinomycin D (Rowling and Schalinske, unpublished observations), a 

potent inhibitor of transcription. This provides evidence that the effect of RA and DEX on 

GNMT may be mediated at the transcriptional level. To expand on these findings, we are 

currently conducting experiments that measure GNMT mRNA levels in rats and cells that 

have been treated with a number of nutritional and hormonal factors, including as RA and 

DEX. However, because RA- and DEX- mediated GNMT protein induction may not be due 

solely to increased transcription, but rather stabilization of GNMT mRNA, increased 

translation and/or GNMT protein stabilization, we are conducting sets of experiments that 

measure the synthesis and degradation rates of GNMT mRNA and GNMT protein. Taken 

together, we expect that these experiments will assist us in pinpointing the cellular 

mechanism that is being utilized to increase the expression of GNMT. 
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We are also in the process of planning and conducting experiments that utilize our 

diabetic rat and cell culture models to explore the possible mechanistic role of insulin in the 

prevention of abnormal methyl group metabolism as well as to discover interactions between 

diabetes and retinoid compounds as they relate to increased GNMT expression and 

alterations of other aspects of methyl group, folate, and homocysteine metabolism. Although 

we are still at the early stages of this research area, we have recently discovered that 

treatment of H4IIE hepatoma and AR42J pancreatic tumor cells with insulin prevented 

induction of GNMT protein abundance following RA and DEX treatment (Rowling and 

Schalinske, unpublished observations). 

I expect that the research presented in this dissertation, as well as future research in 

Dr. Schalinske's laboratory, will help provide a basis for (i) establishing future dietary 

recommendations to prevent abnormal methyl group metabolism in diabetics and those using 

therapeutic retinoids, (ii) identifying individuals at risk for pathological conditions associated 

with abnormal methyl group metabolism, and (iii) evaluating interactions between increased 

GNMT expression and common inborn errors of methyl group metabolism. 
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